1
|
Doi M, Miura H, Shishido T. Borylation of Stable C(sp 3)-O Bonds of Alkyl Esters over Supported Au Catalysts. Org Lett 2024; 26:2902-2907. [PMID: 38572805 DOI: 10.1021/acs.orglett.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We report herein that supported gold catalysts efficiently promote the borylation of stable C(sp3)-O bonds of alkyl esters. The use of a disilane as an electron source and gold nanoparticles as a single-electron transfer catalyst is the key to generating alkyl radicals via the homolysis of stable C(sp3)-O bonds, thereby enabling cross-coupling between bis(pinacolato)diboron and linear and cyclic alkyl esters to afford the diverse alkyl boronates.
Collapse
Affiliation(s)
- Masafumi Doi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Wang M, Huang Y, Hu P. Terminal C(sp 3)-H borylation through intermolecular radical sampling. Science 2024; 383:537-544. [PMID: 38300993 DOI: 10.1126/science.adj9258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Hydrogen atom transfer (HAT) processes can overcome the strong bond dissociation energies (BDEs) of inert C(sp3)-H bonds and thereby convert feedstock alkanes into value-added fine chemicals. Nevertheless, the high reactivity of HAT reagents, coupled with the small differences among various C(sp3)-H bond strengths, renders site-selective transformations of straight-chain alkanes a great challenge. Here, we present a photocatalytic intermolecular radical sampling process for the iron-catalyzed borylation of terminal C(sp3)-H bonds in substrates with small steric hindrance, including unbranched alkanes. Mechanistic investigations have revealed that the reaction proceeds through a reversible HAT process, followed by a selective borylation of carbon radicals. A boron-sulfoxide complex may contribute to the high terminal regioselectivity observed.
Collapse
Affiliation(s)
- Miao Wang
- Institute of Green Chemistry and Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Liao JJ, Tian RG, Tian SK. Nickel-Catalyzed Reductive Cross-Coupling of Allylammonium Salts with Alkyl Iodides. J Org Chem 2023; 88:14781-14788. [PMID: 37769123 DOI: 10.1021/acs.joc.3c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
An unprecedented reductive cross-coupling reaction of allylammonium salts with alkyl electrophiles has been established through C-N bond cleavage. A range of allylammonium bromides smoothly participated in the nickel-catalyzed zinc-mediated allyl-alkyl cross-electrophile coupling reaction with alkyl iodides, delivering structurally diverse alkene products in moderate to good yields with high linear selectivity. Preliminary mechanistic experiments are consistent with the formation of an alkyl radical from the alkyl iodide.
Collapse
Affiliation(s)
- Jia-Jia Liao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ren-Gui Tian
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shi-Kai Tian
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Chen M, Gu YW, Deng W, Xu ZY. Mechanism and Origins of Regio- and Stereoselective Alkylboration of Endocyclic Olefins Enabled by Nickel Catalysis. J Org Chem 2023; 88:14115-14130. [PMID: 37766467 DOI: 10.1021/acs.joc.3c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The Ni-catalyzed alkylboration of endocyclic olefins is a stereo- and regioselective approach for the synthesis of boron-containing compounds. We report a detailed density functional theory (DFT) study to elucidate the mechanism and origins of the stereo-, chemo-, and regioselectivity of alkylboration of endocyclic olefins enabled by nickel catalysis. The alkylboration proceeds via the migratory insertion of alkenes, β-H elimination of the Ni(II) complex, subsequent migratory insertion leading to a new Ni(II) complex, combined with an alkyl radical, and reductive eliminations. The electronic effects of the endocyclic olefins synergistically control the regioselectivity toward the C1- and C2-position boration. In C1-position boration, a more electron-deficient carbon atom tends to combine with an electron-rich -Bpin group and leads to C1-position boration products. The stereoselectivity is influenced by the solvent effect, and the interaction between the substrate and Ni-catalyzed groups, the low-polarity solvent 1,4-dioxane, and a favorable steric hindrance effect result in the cis-alkylboration product. Chemoselectivity toward 1,3-alkylboration results from the steric hindrance effects of the -Bpin group.
Collapse
Affiliation(s)
- Man Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yi-Wen Gu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Zheng-Yang Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
5
|
Sun B, Li W, Liu Q, Zhang G, Mo F. Transition metal-free visible light photoredox-catalyzed remote C(sp 3)-H borylation enabled by 1,5-hydrogen atom transfer. Commun Chem 2023; 6:156. [PMID: 37488210 PMCID: PMC10366130 DOI: 10.1038/s42004-023-00960-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The borylation of unreactive carbon-hydrogen bonds is a valuable method for transforming feedstock chemicals into versatile building blocks. Here, we describe a transition metal-free method for the photoredox-catalyzed borylation of unactivated C(sp3)-H bond, initiated by 1,5-hydrogen atom transfer (HAT). The remote borylation was directed by 1,5-HAT of the amidyl radical, which was generated by photocatalytic reduction of hydroxamic acid derivatives. The method accommodates substrates with primary, secondary and tertiary C(sp3)-H bonds, yielding moderate to good product yields (up to 92%) with tolerance for various functional groups. Mechanistic studies, including radical clock experiments and DFT calculations, provided detailed insight into the 1,5-HAT borylation process.
Collapse
Affiliation(s)
- Beiqi Sun
- School of Materials Science and Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Wenke Li
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Qianyi Liu
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Gaoge Zhang
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
6
|
Abstract
Direct borylation of benzylic alcohols has been achieved via an iodine-catalyzed process. This transition-metal-free borylation transformation is compatible with various functional groups and provides a practical and convenient method to access important and useful benzylic boronate esters from widely available benzylic alcohols. Preliminary mechanistic investigations indicated that benzylic iodide and radicals are involved as the key intermediates in this borylation reaction.
Collapse
Affiliation(s)
- Chunyu Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|