1
|
Gu S, Chen J, Hussain I, Wang Z, Chen X, Ahmad M, Feng SP, Lu Z, Zhang K. Modulation of Radical Intermediates in Rechargeable Organic Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306491. [PMID: 37533193 DOI: 10.1002/adma.202306491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Organic materials have been considered as promising electrodes for next-generation rechargeable batteries in view of their sustainability, structural flexibility, and potential recyclability. The radical intermediates generated during the redox process of organic electrodes have profound effect on the reversible capacity, operation voltage, rate performance, and cycling stability. However, the radicals are highly reactive and have very short lifetime during the redox of organic materials. Great efforts have been devoted to capturing and investigating the radical intermediates in organic electrodes. Herein, this review summarizes the importance, history, structures, and working principles of organic radicals in rechargeable batteries. More importantly, challenges and strategies to track and regulate the radicals in organic batteries are highlighted. Finally, further perspectives of organic radicals are proposed for the development of next-generation high-performance rechargeable organic batteries.
Collapse
Affiliation(s)
- Shuai Gu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jingjing Chen
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqiang Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shien-Ping Feng
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
2
|
Yao B, Li G, Wu X, Sun H, Liu X, Li F, Guo T. Polyimide covalent organic frameworks bearing star-shaped electron-deficient polycyclic aromatic hydrocarbon building blocks: molecular innovations for energy conversion and storage. Chem Commun (Camb) 2024; 60:793-803. [PMID: 38168788 DOI: 10.1039/d3cc05214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polyimide covalent organic frameworks (PI-COFs) are outstanding functional materials for electrochemical energy conversion and storage owing to their integrated advantages of the high electroactive feature of polyimides and the periodic porous structure of COFs. Nevertheless, only anhydride monomers with C2 symmetry are generally used, and limited selectivity of electron-deficient monomers has become a major obstacle in the development of materials. The introduction of polycyclic aromatic hydrocarbons (PAHs) is a very effective method to regulate the structure-activity relationship of PI-COFs due to their excellent stability and electrical properties. Over the past two years, various star-shaped electron-deficient PAH building blocks possessing different compositions and topologies have been successfully fabricated, greatly improving the monomer selectivity and electrochemical performances of PI-COFs. This paper systematically summarizes the recent highlights in PI-COFs based on these building blocks. Firstly, the preparation of anhydride (or phthalic acid) monomers and PI-COFs related to different star-shaped PAHs is presented. Secondly, the applications of these PI-COFs in energy conversion and storage and the corresponding factors influencing their performance are discussed in detail. Finally, the future development of this meaningful field is briefly proposed.
Collapse
Affiliation(s)
- Bin Yao
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Guowang Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xianying Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Hongfei Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xingyan Liu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Tingwang Guo
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
3
|
Ling Z, Wu L, Hu C, Qi X, Qin L, Pan J, Zhang X. Prolonging the Cycle Stability of Anion Redox P3-Type Na 0.6Li 0.2Mn 0.8O 2 through Al 2O 3 Atomic Layer Deposition Surface Modification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2319-2329. [PMID: 38174695 DOI: 10.1021/acsami.3c15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sodium-ion batteries (SIBs) are becoming an alternative option for large-scale energy storage systems owing to their low cost and abundance. The lattice oxygen redox (LOR), which has the potential to increase the reversible capacity of materials, has promoted the development of high-energy cathode materials in SIBs. However, the utilization of oxygen anion redox reactions usually results in harmful lattice oxygen release, which hastens structural deformation and declines electrochemical performance, severely hindering their practical application. Herein, a ribbon-ordered superstructured P3-type Na0.6Li0.2Mn0.8O2 (NLMO) cathode with a uniform Al2O3 coating through atomic layer deposition (ALD) was synthesized. The cycling stability and rate capability of the materials were improved by a proper thickness of the Al2O3 layer. Differential electrochemical mass spectrometry (DEMS) results clearly suggest that the Al2O3 coating can inhibit the CO2 release caused by the highly active surface of the NLMO material. Moreover, the results of transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy (XPS) show that the Al2O3 coating can effectively prevent electrolyte and electrode side reactions and the dissolution of Mn. This surface engineering strategy sheds light on the way to prolong the cycling stability of anionic redox cathode materials.
Collapse
Affiliation(s)
- Zhenxiao Ling
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Chaogen Hu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xiaodong Qi
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Lunjie Qin
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Jiaqi Pan
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
4
|
Luo C. Organic electrode materials and carbon/small-sulfur composites for affordable, lightweight and sustainable batteries. Chem Commun (Camb) 2023; 59:9803-9817. [PMID: 37475598 DOI: 10.1039/d3cc02652c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Redox-active organic/polymeric materials and carbon/small-sulfur composites are promising electrode materials for developing affordable, lightweight, and sustainable batteries because of their low cost, abundance, low carbon footprint, and flexible structural tunability. This feature article summarized the key aspects of the research related to organic batteries and Li-S batteries (LSBs) based on organic/polymeric/sulfur materials for next-generation sustainable energy storage. An in-depth discussion for organic electrode materials in alkali-ion, multivalent metal, all-solid-state, and redox flow batteries is provided. State-of-the-art LSBs under high mass loading and lean electrolyte conditions for practical applications is also covered. The challenges, reaction mechanisms, strategies, approaches, and developments of organic batteries and LSBs are discussed to offer guidance for rational structure design and performance optimization. This feature article will contribute to the development and commercialization of affordable, lightweight, and sustainable batteries.
Collapse
Affiliation(s)
- Chao Luo
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA, 22030, USA.
- Quantum Science & Engineering Center, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|
5
|
Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Wang Z, Zhang P, Li J, Zhang C, Jiang JX, Lv M, Ding Z, Zhang B. A low-cost naphthaldiimide based organic cathode for rechargeable lithium-ion batteries. Front Chem 2022; 10:1056244. [PMID: 36465871 PMCID: PMC9713238 DOI: 10.3389/fchem.2022.1056244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 12/10/2023] Open
Abstract
Recently, the development of cathode materials is becoming an important issue for lithium-ion batteries (LIBs). Compared with inorganic cathodes, the organic cathodes are developing rapidly, ascribing to their distinct merits in light weight, low cost, massive organic resources and high capacity. In this paper, a cost-efficiency naphthaldiimide (NDI) based derivative, 2,7-bis(2-((2-hydroxyethyl) amino) ethyl) benzo[lmn] [3,8] phenanthroline-1,3,6,8(2H, 7H)-tetraone (NDI-NHOH), was used as organic cathode in LIBs. The NDI-NHOH was synthesized easily via one-step process, and it showed very high thermal stability. Through mixing NDI-NHOH with acetylene black and polyvinylidene fluoride (weight ratio of 6:3:1) as composite cathode in lithium-metal based LIBs, the NDI-NHOH presented versatile electrochemical properties. From cyclic voltammetry (CV) test, it exhibited two reversible peaks for oxidation and reduction in the first cycle, respectively. Notably, the oxidation and reduction peaks were located at 2.54, 3.22 and 2.14, 2.32 V vs. Li+/Li, respectively. By employing NDI-NHOH as cathode, it demonstrated a specific capacity of about 80 mAh g-1 in the range of 1.5-3.5 V, where the batteries retained a capacity retention of 50% over 20 cycles. According to the LIBs study, it suggests that the NDI-NHOH-based derivative shows a potentially promising candidate as efficient organic cathode materials for high-performance metal-ions batteries.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Pengchao Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, China
| | - Junpeng Li
- School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, China
| | - Menglan Lv
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Zhengping Ding
- School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Hussain I, Lamiel C, Sahoo S, Javed MS, Ahmad M, Chen X, Gu S, Qin N, Assiri MA, Zhang K. Animal- and Human-Inspired Nanostructures as Supercapacitor Electrode Materials: A Review. NANO-MICRO LETTERS 2022; 14:199. [PMID: 36201062 PMCID: PMC9537411 DOI: 10.1007/s40820-022-00944-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/31/2022] [Indexed: 05/13/2023]
Abstract
Human civilization has been relentlessly inspired by the nurturing lessons; nature is teaching us. From birds to airplanes and bullet trains, nature gave us a lot of perspective in aiding the progress and development of countless industries, inventions, transportation, and many more. Not only that nature inspired us in such technological advances but also, nature stimulated the advancement of micro- and nanostructures. Nature-inspired nanoarchitectures have been considered a favorable structure in electrode materials for a wide range of applications. It offers various positive attributes, especially in energy storage applications, such as the formation of hierarchical two-dimensional and three-dimensional interconnected networked structures that benefit the electrodes in terms of high surface area, high porosity and rich surface textural features, and eventually, delivering high capacity and outstanding overall material stability. In this review, we comprehensively assessed and compiled the recent advances in various nature-inspired based on animal- and human-inspired nanostructures used for supercapacitors. This comprehensive review will help researchers to accommodate nature-inspired nanostructures in industrializing energy storage and many other applications.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Charmaine Lamiel
- Department of Chemical Engineering, University of Wyoming, Laramie, WY, 82071, USA
| | - Sumanta Sahoo
- Department of Chemistry, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh, 517325, India
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Shuai Gu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Ning Qin
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
8
|
Chen J, Gu S, Hao R, Liu K, Wang Z, Li Z, Yuan H, Guo H, Zhang K, Lu Z. Unraveling the Role of Aromatic Ring Size in Tuning the Electrochemical Performance of Small-Molecule Imide Cathodes for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44330-44337. [PMID: 36125517 DOI: 10.1021/acsami.2c11138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic electrode materials have the typical advantages of flexibility, low cost, abundant resources, and recyclability. However, it is challenging to simultaneously optimize the specific capacity, rate capability, and cycling stability. Radicals are inevitable intermediates that critically determine the redox activity and stability during the electrochemical reaction of organic electrodes. Herein, we select a series of aromatic imides, including pyromellitic diimide (PMDI), 1,4,5,8-naphthalenediimide (NDI), and 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which contain different extending π-conjugated aromatic rings, to study the relationship between their electrochemical performance and the size of the aromatic ring. The results show that regulating the aromatic ring size of imide molecules could finely tune the energies of the lowest unoccupied molecular orbital (LUMO), thus optimizing the redox potential. The rate performance of PMDI, NDI, and PTCDI increases with the aromatic ring size, which is consistent with the decrease in the LUMO-HOMO gap of these imide molecules. DFT calculations and experiments reveal that the redox of imide radicals dominates the charge/discharge processes. Also, extending the aromatic rings could more effectively disperse the spin electron density and improve the stability of imide radicals, contributing to the enhanced cycling stability of these imide electrodes. Hence, aromatic ring size regulation is a simple and novel approach to simultaneously enhance the capacity, rate capability, and cycling stability of organic electrodes for high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Shuai Gu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Rui Hao
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Kun Liu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Zhiqiang Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Zhiqiang Li
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Huimin Yuan
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Hao Guo
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
9
|
Hussain I, Sahoo S, Sayed MS, Ahmad M, Sufyan Javed M, Lamiel C, Li Y, Shim JJ, Ma X, Zhang K. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214429] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|