1
|
Halder S, Pal S, Sivasakthi P, Samanta PK, Chakraborty C. Thiazolothiazole-Containing Conjugated Polymer with Electrochromism and Electrofluorochromism-Based Dual Performance for a Flip-Flop Molecular Logic Gate. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
2
|
Zawadzka M, Nitschke P, Musioł M, Siwy M, Pluczyk-Małek S, Honisz D, Łapkowski M. Naphthalene Phthalimide Derivatives as Model Compounds for Electrochromic Materials. Molecules 2023; 28:molecules28041740. [PMID: 36838729 PMCID: PMC9968047 DOI: 10.3390/molecules28041740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Electrochromism of organic compounds is a well-known phenomenon; however, nowadays, most research is focused on anodic coloring materials. Development of efficient, cathodic electrochromic materials is challenging due to the worse stability of electron accepting materials compared with electron donating ones. Nevertheless, designing stable cathodic coloring organic materials is highly desired-among other reasons-to increase the coloration performance. Hence, four phthalimide derivatives named 1,5-PhDI, 1,4-PhDI, 2,6-PhDI and 3,3'-PhDI were synthesized and analyzed in depth. In all cases, two imide groups were connected via naphthalene (1,5-PhDI, 1,4-PhDI, 2,6-PhDI) or 3,3'-dimethylnaphtidin (3,3'-PhDI) bridge. To observe the effect of chemical structure on physicochemical properties, various positions of imide bond were considered, namely, 1,5- 1,4- and 2,6-. Additionally, a compound with the pyromellitic diimide unit capped with two 1-naphtalene substituents was obtained. All compounds were studied in terms of their thermal behavior, using differential calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover, electrochemical (CV, DPV) and spectroelectrochemical (UV-Vis and EPR) analyses were performed to evaluate the obtained materials in terms of their application as cathodic electrochromic materials. All obtained materials undergo reversible electrochemical reduction which leads to changes in their optical properties. In the case of imide derivatives, absorption bands related to both reduced and neutral forms are located in the UV region. However, importantly, the introduction of the 3,3'-dimethylnaphtidine bridge leads to a noticeable bathochromic shift of the reduced form absorption band of 3,3'-PhDI. This indicates that optimization of the phthalimide structure allows us to obtain stable, cathodic electrochromic materials.
Collapse
Affiliation(s)
- Magdalena Zawadzka
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Sandra Pluczyk-Małek
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Correspondence: (S.P.-M.); (M.Ł.)
| | - Damian Honisz
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
- Correspondence: (S.P.-M.); (M.Ł.)
| |
Collapse
|
3
|
Ranjan Jena S, Mandal T, Choudhury J. Metal-Terpyridine Assembled Functional Materials for Electrochromic, Catalytic and Environmental Applications. CHEM REC 2022; 22:e202200165. [PMID: 36002341 DOI: 10.1002/tcr.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Molecular assembly induced by metal-terpyridine-based coordinative interactions has become an emergent research topic due to its ease of synthesis and diverse applications. This article highlights recent significant developments in the metal-terpyridine-based supramolecular architectures. At first, the design aspect of the molecular building blocks has been described, followed by elaboration on how the ligand backbone plays an important role for achieving different dimensionalities of the resulting assemblies which exhibit a wide range of potential applications. After that, we discussed different synthetic approaches for constructing these assemblies, and finally, we focused on their significant developments in three specific areas, viz., electrochromic materials, catalysis and a new application in wastewater treatment. In the field of electrochromic materials, these assemblies made important advancements in various aspects like sub-second switching time (<1 s), low switching voltage (<1 V), increased switching stability (>10000 cycles), tuning of multiple colors by using multimetallic systems, fabrication of charge storing electrochromic devices, utilizing and storing solar energy etc. Similarly, the catalysis field witnessed application of the metal-terpyridine assemblies in C-H monohalogenation, heterogeneous Suzuki-Miyaura coupling, photocatalysis, reduction of carbon dioxide, etc. Finally, the environmental application of these coordination assemblies includes capturing Cr(VI) from waste water efficiently with high capture capacity, good recyclability, wide pH independency etc.
Collapse
Affiliation(s)
- Satya Ranjan Jena
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Tanmoy Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| |
Collapse
|
4
|
Halder S, Roy S, Dixit M, Chakraborty C. A terpyridine based hydrogel system for reversible transmissive-to-dark electrochromism and bright-to-quenched electrofluorochromism. Chem Commun (Camb) 2022; 58:8368-8371. [PMID: 35792067 DOI: 10.1039/d2cc02384a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carboxylic acid-containing terpyridine-based hydrogelator (TPPCA) is synthesized to afford a self-assembly induced TPPCA hydrogel, which was used as an all-in-one electrochrome in electrochromic devices (ECDs) to demonstrate reversible transparent-to-black electrochromism with fast darkening and bleaching time of 8.3 s and 9.5 s, respectively, high photopic coloration efficiency of 65.8 cm2 C-1 and high optical memory. The ECD also revealed bluish-white to quenched emission simultaneously under the -3.5 V to 0 V voltage range.
Collapse
Affiliation(s)
- Sayan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Samirpet, Hyderabad, Telangana 500078, India.
| | - Susmita Roy
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Samirpet, Hyderabad, Telangana 500078, India.
| | - Mudit Dixit
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Samirpet, Hyderabad, Telangana 500078, India. .,Materials Center for Sustainable Energy & Environment (McSEE), Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| | - Chanchal Chakraborty
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Samirpet, Hyderabad, Telangana 500078, India. .,Materials Center for Sustainable Energy & Environment (McSEE), Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
5
|
Radha G, Roy S, Chakraborty C, Aggarwal H. Electrochromic and photochromic behaviour in a single metal-organic framework containing a redox-active linker. Chem Commun (Camb) 2022; 58:4024-4027. [PMID: 35254374 DOI: 10.1039/d2cc00288d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Zr-based metal organic framework with naphthalene diimide teracarboxylate linkers is reported for its dual electrochromic and photochromic behavior. MOF crystals display reversible yellow to green photochromism upon exposure to visible light and colourless to dark-brown reversible electrochromism on applying a potential of 0 to -2.5 V. The MOF thin film shows good colouration efficiency at 550 nm, which is the highest sensitivity of the human eye.
Collapse
Affiliation(s)
- Govu Radha
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India.
| | - Susmita Roy
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India.
| | - Chanchal Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India. .,Materials Center for Sustainable Energy & Environment (McSEE), Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| | - Himanshu Aggarwal
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India. .,Materials Center for Sustainable Energy & Environment (McSEE), Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
6
|
Manfroni G, Prescimone A, Constable EC, Housecroft CE. Stars and stripes: hexatopic tris(3,2':6',3''-terpyridine) ligands that unexpectedly form one-dimensional coordination polymers. CrystEngComm 2022; 24:491-503. [PMID: 35177954 PMCID: PMC8764615 DOI: 10.1039/d1ce01531a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
The hexatopic ligands 1,3,5-tris(4,2':6',4''-terpyridin-4'-yl)benzene (1), 1,3,5-tris(3,2':6',3''-terpyridin-4'-yl)benzene (2), 1,3,5-tris{4-(4,2':6',4''-terpyridin-4'-yl)phenyl}benzene (3), 1,3,5-tris{4-(3,2':6',3''-terpyridin-4'-yl)phenyl}benzene (4) and 1,3,5-trimethyl-2,4,6-tris{4-(3,2':6',3''-terpyridin-4'-yl)phenyl}benzene (5) have been prepared and characterized. The single crystal structure of 1·1.75DMF was determined; 1 exhibits a propeller-shaped geometry with each of the three 4,2':6',4''-tpy domains being crystallographically independent. Packing of molecules of 1 is dominated by face-to-face π-stacking interactions which is consistent with the low solubility of 1 in common organic solvents. Reaction of 5 with [Cu(hfacac)2]·H2O (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) under conditions of crystal growth by layering resulted in the formation of [Cu3(hfacac)6(5)] n ·2.8nC7H8·0.4nCHCl3. Single-crystal X-ray diffraction reveals an unusual 1D-coordination polymer consisting of a series of alternating single and double loops. Each of the three crystallographically independent Cu atoms is octahedrally sited with cis-arrangements two N-donors from two different ligands 1 and, therefore, cis-arrangements of coordinated [hfacac]- ligands; this observation is unusual among compounds in the Cambridge Structural Database containing {Cu(hfacac)2N2} coordination units in which the two N-donors are in a non-chelating ligand.
Collapse
Affiliation(s)
- Giacomo Manfroni
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| |
Collapse
|