1
|
Delecluse M, Manick AD, Chatelet B, Chevallier-Michaud S, Moraleda D, Riggi ID, Dutasta JP, Martinez A. Ditopic Covalent Cage for Ion-Pair Binding: Influence of Anion Complexation on the Cation Exchange Rate. Chempluschem 2024; 89:e202300558. [PMID: 37950861 DOI: 10.1002/cplu.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
A new hemicryptophane host with a ditopic molecular cavity combining a cyclotriveratrylene (CTV) unit with a tris-urea moiety was synthesized. The complexation of halides, tetramethylammonium (TMA+) cation, and ion pairs was investigated. A positive cooperativity was observed, since halides display a higher binding constant when a TMA+ cation is already present inside the cage. When TMA+ was complexed alone, a decrease of temperature from 298 K to 230 K was required to switch from a fast to a slow exchange regime on the NMR time scale. Nevertheless, the prior complexation of a halide guest in the lower part of the host resulted in significant decrease of the exchange rate of the subsequent complexation of the TMA+ cation. Under these conditions, the 1H NMR signals characteristic of a slow exchange regime were observed at 298 K. Addition of an excess of salts, increases the ionic strength of the solution, restoring the fast exchange dynamics. This result provides insight on how the exchange rate of a cation guest can be modulated by the complexation of a co-guest anion.
Collapse
Affiliation(s)
- Magalie Delecluse
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Anne-Doriane Manick
- Aix-Marseille Univ., CNRS, Institut de Chimie, Radicalaire, UMR 7273, 13397, Marseille, France
| | - Bastien Chatelet
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | | | - Delphine Moraleda
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Innocenzo de Riggi
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENS Lyon, CNRS, Laboratoire de Chimie UMR 5182 46 Allée d'Italie, 69364, Lyon, France
| | - Alexandre Martinez
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| |
Collapse
|
2
|
Pavlović RZ, Finnegan TJ, Metlushko A, Hansen AL, Waudby CA, Wang X, Hoefer N, McComb DW, Pavić A, Plackić N, Novaković J, Bradić J, Jeremić N, Jakovljević V, Šmit B, Matić S, Alvarez-Saavedra MA, Čapo I, Moore CE, Stupp SI, Badjić JD. Dynamic and Assembly Characteristics of Deep-Cavity Basket Acting as a Host for Inclusion Complexation of Mitoxantrone in Biotic and Abiotic Systems. Chemistry 2023; 29:e202303374. [PMID: 37851342 DOI: 10.1002/chem.202303374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
We describe the preparation, dynamic, assembly characteristics of vase-shaped basket 13- along with its ability to form an inclusion complex with anticancer drug mitoxantrone in abiotic and biotic systems. This novel cavitand has a deep nonpolar pocket consisting of three naphthalimide sides fused to a bicyclic platform at the bottom while carrying polar glycines at the top. The results of 1 H Nuclear Magnetic Resonance (NMR), 1 H NMR Chemical Exchange Saturation Transfer (CEST), Calorimetry, Hybrid Replica Exchange Molecular Dynamics (REMD), and Microcrystal Electron Diffraction (MicroED) measurements are in line with 1 forming dimer [12 ]6- , to be in equilibrium with monomers 1(R) 3- (relaxed) and 1(S) 3- (squeezed). Through simultaneous line-shape analysis of 1 H NMR data, kinetic and thermodynamic parameters characterizing these equilibria were quantified. Basket 1(R) 3- includes anticancer drug mitoxantrone (MTO2+ ) in its pocket to give stable binary complex [MTO⊂1]- (Kd =2.1 μM) that can be precipitated in vitro with UV light or pH as stimuli. Both in vitro and in vivo studies showed that the basket is nontoxic, while at a higher proportion with respect to MTO it reduced its cytotoxicity in vitro. With well-characterized internal dynamics and dimerization, the ability to include mitoxantrone, and biocompatibility, the stage is set to develop sequestering agents from deep-cavity baskets.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Tyler J Finnegan
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Anna Metlushko
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Nicole Hoefer
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Nikola Plackić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Jovana Novaković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Nevena Jeremić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Biljana Šmit
- University of Kragujevac, Institute for Information Technologies, Department of Science, Kragujevac, Serbia)
| | - Sanja Matić
- University of Kragujevac, Institute for Information Technologies, Department of Science, Kragujevac, Serbia)
| | - Matias A Alvarez-Saavedra
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Ivan Čapo
- Department of Histology and Embryology, Medical Faculty of Novi Sad, Novi Sad, Serbia
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
La Manna P, Talotta C, Gaeta C, Cohen Y, Slovak S, Rescifina A, Sala PD, De Rosa M, Soriente A, Neri P. Supramolecular catalysis in confined space: making the pyrogallol[4]arene capsule catalytically active in non-competitive solvent. Org Chem Front 2022. [DOI: 10.1039/d2qo00172a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The confined space inside the hexameric pyrogallol[4]arene capsule (CP6) has been exploited for the catalysis of the 1,3-dipolar cycloaddition (1,3-DC) between the proline-based iminium derivative I and nitrone 3, in the presence of the non-competitive benzene solvent.
Collapse
Affiliation(s)
- Pellegrino La Manna
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| |
Collapse
|
8
|
Geue N, Winpenny REP, Barran PE. Structural characterisation methods for supramolecular chemistry that go beyond crystallography. Chem Soc Rev 2021; 51:8-27. [PMID: 34817479 DOI: 10.1039/d0cs01550d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supramolecular chemistry has grown rapidly over the past three decades, yet synthetic supramolecular chemists still face several challenges when it comes to characterising their compounds. In this review, we present an introduction to structural characterisation techniques commonly used for non-crystalline supramolecular molecules, e.g. nuclear magnetic and electron paramagnetic resonance spectroscopy (NMR and EPR), mass spectrometry (MS), ion mobility mass spectrometry (IM-MS), small-angle neutron and X-ray scattering (SANS and SAXS) as well as cryogenic transmission electron microscopy (cryo-TEM). We provide an overview of their fundamental concepts based on case studies from different fields of supramolecular chemistry, e.g. interlocked structures, molecular self-assembly and host-guest chemistry, while focussing on particular strengths and weaknesses of the discussed methods. Additionally, three multi-technique case studies are examined in detail to illustrate the benefits of using complementary techniques simultaneously.
Collapse
Affiliation(s)
- Niklas Geue
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Richard E P Winpenny
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|