1
|
Wu H, Chen K, Liu Y, Wan JP. Unlock the C-N Bond Amidation of Enaminones: Metal-Free Synthesis of Enamides by Water-Assisted Transamidation. J Org Chem 2024; 89:216-223. [PMID: 38109677 DOI: 10.1021/acs.joc.3c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The C-N bond transamidation of primary amides with N,N-dimethyl enaminones has been efficiently realized by heating in the presence of trifluoromethanesulfonic acid (TfOH). The method enables the practical synthesis of valuable enamides without the use of any metal reagent. In addition, this transamidation protocol can also be expanded to the reactions of sulfonamides, and the late-stage functionalization on sulfonamide drugs such as Celecoxib and Valdecoxib has been verified. Moreover, the participation of water in assisting the transamidation process has been identified by the isotope labeling experiments using D2O, disclosing a new possibility in designing catalytic tactic to other transamidation reactions.
Collapse
Affiliation(s)
- Haozhi Wu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kang Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Ye J, Liu Y, Luo J, Wan JP. "Alkene-to-Alkene" Difunctionalization of Enaminones for the Synthesis of Polyfunctionalized Alkenes by Transition-Metal-Free C-H and C-N Bond Transformation. Org Lett 2023; 25:8451-8456. [PMID: 37971945 DOI: 10.1021/acs.orglett.3c03353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The three-component reactions of enaminones, disulfides, and alcohols for the synthesis of polyfunctionalized alkenes have been realized via the C-H and C-N bond transformation on enaminones. The reactions proceed in a novel "alkene-to-alkene" difunctionalization mode without using any transition metal. The application of the alkene products in the synthesis of divergent sulfenyl heteroaryls, including sulfenylated pyrazoles, pyrimidines, and isoxazoles, via simple annulation has also been verified.
Collapse
Affiliation(s)
- Jingfeng Ye
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
Liu C, Van der Eycken J, Van der Eycken EV. Transition Metal-Free N-S Bond Cleavage and C-N Bond Activation of Ugi-Adducts for Rapid Preparation of Primary Amides and α-Ketoamides. Chemistry 2023; 29:e202301541. [PMID: 37410246 DOI: 10.1002/chem.202301541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
A novel method of transition metal-free N-S bond cleavage and subsequent C-N bond activation of Ugi-adducts was developed. Diverse primary amides and α-ketoamides were prepared in a rapid, step-economical and highly efficient manner in two steps. This strategy features excellent chemoselectivity, high yield and functional-group tolerance. Primary amides derived from the pharmaceuticals probenecid and febuxostat were prepared. This method opens a new pathway for the simultaneous synthesis of primary amides and α-ketoamides in an environmentally friendly manner.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S.4), Ghent, 9000, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, 3001, Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya street 6, Moskva, RU-117198, Moscow, Russia
| |
Collapse
|
4
|
Liu D, Song S, Chen L, Zhang M, Liu Z, Lu X, Huang J, Yu F. Access to thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives via a regioselective oxidative annulation reaction. Org Biomol Chem 2023; 21:2596-2602. [PMID: 36891944 DOI: 10.1039/d3ob00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A metal-free regioselective oxidative annulation reaction of readily available 2,4-pentanediones with primary amines has been described. This protocol provides a divergent strategy for the incorporation of various radical donors into 5-alkylidene 3-pyrrolin-2-one skeletons, producing a variety of thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives. Moreover, the diverse synthetic transformations of the 5-alkylidene 3-pyrrolin-2-one products were also investigated.
Collapse
Affiliation(s)
- Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Xihang Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| |
Collapse
|
5
|
Yan F, Bai JF, Dong Y, Liu S, Li C, Du CX, Li Y. Catalytic Cyanation of C-N Bonds with CO 2/NH 3. JACS AU 2022; 2:2522-2528. [PMID: 36465537 PMCID: PMC9709945 DOI: 10.1021/jacsau.2c00392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Cyanation of benzylic C-N bonds is useful in the preparation of important α-aryl nitriles. The first general catalytic cyanation of α-(hetero)aryl amines, analogous to the Sandmeyer reaction of anilines, was developed using reductive cyanation with CO2/NH3. A broad array of α-aryl nitriles was obtained in high yields and regioselectivity by C-N cleavage of intermediates as ammonium salts. Good tolerance of functional groups such as ethers, CF3, F, Cl, esters, indoles, and benzothiophenes was achieved. Using 13CO2, a 13C-labeled tryptamine homologue (five steps, 31% yield) and Cysmethynil (six steps, 37% yield) were synthesized. Both electronic and steric effects of ligands influence the reactivity of alkyl nickel species with electrophilic silyl isocyanates and thus determine the reactivity and selectivity of the cyanation reaction. This work contributes to the understanding of the controllable activation of CO2/NH3 and provides the promising potential of the amine cyanation reaction in the synthesis of bio-relevant molecules.
Collapse
Affiliation(s)
- Fachao Yan
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Jian-Fei Bai
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yanan Dong
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Shaoli Liu
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, P. R. China
| | - Chen Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Chen-Xia Du
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuehui Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
6
|
Polymeric REE coordination compounds based on novel enaminone derivative. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Li X, Chen Z, Liu Y, Luo N, Chen W, Liu C, Yu F, Huang J. Nickel-Catalyzed Reductive Borylation of Enaminones via C(sp 2)-N Bond Cleavage. J Org Chem 2022; 87:10349-10358. [PMID: 35895906 DOI: 10.1021/acs.joc.2c00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cleavage and transformation of alkenyl C(sp2)-N bonds is a significant synthetic challenge. Herein we described an unprecedented nickel-catalyzed reductive borylation of enaminones to synthesize β-ketone boronic esters. Notably, B2pin2 played the dual role in this process, and water served as a hydrogen source, which was transferred to target products. The air-stable nickel catalyst was applied to the cleavage of alkenyl C(sp2)-N bonds, concomitant with the reductive process of the alkenyl boronic ester intermediates, on the basis of the mechanism study.
Collapse
Affiliation(s)
- Xiaoning Li
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Nianhua Luo
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenfu Liu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiuzhong Huang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| |
Collapse
|
8
|
2D polymeric lanthanide(III) compounds based on novel bright green emitting enaminone ligand. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Wu H, Luo T, Wan JP, Jiang J, Liu Y. Nickel‐Catalyzed Tandem Ring Contraction of TEMPO and C‐N Bond Transamination of Enaminones toward Amino Diversity of Enaminones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haozhi Wu
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Tian Luo
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jie-Ping Wan
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jianwen Jiang
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Yunyun Liu
- Jiangxi Normal University College of Chemistry and Chemical Engineering 99 Ziyang Road 330022 Nanchang CHINA
| |
Collapse
|
10
|
Kadu VD, Khadul SP, Kothe GJ, Mali GA. Rapid One‐Pot Aerobic Oxidative
N
‐α‐C(sp
3
)‐
H
Functionalization of Arylmethylamines to Access Tetrasubstituted Imidazoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vikas D. Kadu
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Siddheshwar P. Khadul
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Gokul J. Kothe
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Ganesh A. Mali
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| |
Collapse
|
11
|
Liu Y, Zhang T, Wan JP. Ultrasound-Promoted Synthesis of α-Thiocyanoketones via Enaminone C═C Bond Cleavage and Tunable One-Pot Access to 4-Aryl-2-aminothiazoles. J Org Chem 2022; 87:8248-8255. [PMID: 35616657 DOI: 10.1021/acs.joc.2c00708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasound has been successfully employed to promote the thiocyanation of the C═C bond in enaminones for the synthesis of α-thiocyanoketones and 2-aminothiazoles. The reactions of enaminones with ammonium thiocyanate provide α-thiocyanoketones with ultrasound irradiation at room temperature. More interestingly, simply further heating the vessel after ultrasonic irradiation leads to the selective synthesis of 2-aminothiazoles with an unconventional 4-aryl substructure.
Collapse
Affiliation(s)
- Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
12
|
Affiliation(s)
- Alexander Yu. Rulev
- A. E. Favorsky Institute of Chemistry Siberian Branch of the Russian Academy of Sciences Irkutsk 664033 Russia
| | - Ilya A. Tyumentsev
- A. E. Favorsky Institute of Chemistry Siberian Branch of the Russian Academy of Sciences Irkutsk 664033 Russia
| |
Collapse
|
13
|
Li H, Zhu Y, Jiang C, Wei J, Liu P, Sun P. HOAc catalyzed three-component reaction for the synthesis of 3,3'-(arylmethylene)bis(1 H-indoles). Org Biomol Chem 2022; 20:3365-3374. [PMID: 35355039 DOI: 10.1039/d2ob00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient HOAc catalyzed three-component reaction of 2-(arylethynyl)anilines with arylaldehydes has been achieved, which leads to the generation of 3,3'-(arylmethylene)bis(1H-indoles) with good to excellent yields and high regioselectivity under transition-metal-free conditions. Four new C-C and C-N bonds were effectively formed in a one-pot procedure. Subsequent research on the reaction mechanism indicated that the reaction likely involved the processes of intramolecular cyclization and cascade intermolecular dehydration condensation.
Collapse
Affiliation(s)
- Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
14
|
Wang Z, Zhao B, Liu Y, Wan J. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhouying Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang 312000 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
15
|
Dong L, Wang Y, Zhang W, Mo L, Zhang Z. Nickel supported on magnetic biochar as a highly efficient and recyclable heterogeneous catalyst for the one‐pot synthesis of spirooxindole‐dihydropyridines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐Na Dong
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Ya‐Meng Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Wan‐Lu Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Li‐Ping Mo
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| |
Collapse
|
16
|
Zhang C, Luo J, Zhang J, Chen L, Zhu X, Guo M, Shen C, Li Z, Wang W. Tf
2
O‐mediated Regioselective C(sp
2
)−H Sulfenylation of Enaminones Using Methyl Sulfoxides as Sulfur Sources. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Jian Luo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Jiantao Zhang
- College of Chemistry Guangdong University of Petrochemical Technology Guandu Road Maoming 525000 P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Xuncheng Zhu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Chan Shen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Zeng Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Wei Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| |
Collapse
|
17
|
Fu L, Wan JP, Zhou L, Liu Y. Copper-catalyzed C-H/N-H annulation of enaminones and alkynyl esters for densely substituted pyrrole synthesis. Chem Commun (Camb) 2022; 58:1808-1811. [PMID: 35040446 DOI: 10.1039/d1cc06768k] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed annulation of enaminones with alkynyl esters for the facile synthesis of different pyrroles with a 2,3,4,5-tetrasubstituted structure has been developed. With Cu(OAc)2 as the only catalyst, the tunable synthesis of 2-vinyl and 2,3-dicarboxyl-functionalized pyrroles has been achieved by using terminal and internal alkynyl esters, respectively. The synthesis of 2-vinyl pyrroles represents the first example accessing 2-vinyl substituted pyrroles via direct cascade reactions involving vinylation and pyrrole ring formation.
Collapse
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China. .,College of Chemistry and Bio-Engineering, Yichun University, Yichun, Jiangxi 336000, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
18
|
Liu D, Lu X, Zhang Q, Zhao Y, Zhang B, Sun Y, Dai W, Xu Y, Yu F. Facile approach to multifunctionalized 5-alkylidene-3-pyrrolin-2-ones via regioselective oxidative cyclization of 2,4-pentanediones with primary amines and sodium sulfinates. Org Chem Front 2022. [DOI: 10.1039/d2qo00473a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly functionalized 5-alkylidene-3-pyrrolin-2-ones were efficiently synthesized via a four-component cascade cyclization/sulfonylation reaction between readily available 2,4-pentanediones, primary amines and sodium sulfinates under mild conditions.
Collapse
Affiliation(s)
- Donghan Liu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Xihang Lu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Qiaohe Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Yuxuan Zhao
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Biao Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Yulin Sun
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Yu Xu
- School of nursing, Xi'an Innovation College of Yan'an University, Xi'an, 710100, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| |
Collapse
|
19
|
Chen XY, Zhang X, Wan JP. Recent advances in transition metal-free annulation toward heterocycle diversity based on the C-N bond cleavage of enaminone platform. Org Biomol Chem 2022; 20:2356-2369. [DOI: 10.1039/d2ob00126h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enaminones and analogous stable enamines are well known as platform building blocks in organic synthesis for construction of heterocyclic compounds, especially N-heterocycles. To date, especially enaminones have been successfully...
Collapse
|
20
|
Zhang C, Guo H, Chen L, Zhang J, Guo M, Zhu X, Shen C, Li Z. One-Pot Synthesis of Symmetrical and Asymmetrical 3-Amino Diynes via Cu(I)-Catalyzed Reaction of Enaminones with Terminal Alkynes. Org Lett 2021; 23:8169-8173. [PMID: 34636564 DOI: 10.1021/acs.orglett.1c02848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An economical and efficient protocol for the direct construction of amino skipped diynes through the Cu(I)-catalyzed reaction of enaminones and terminal alkynes has been described. Different kinds of symmetrical and asymmetrical 3-amino diynes could be obtained in up to 83% yield through a one-pot reaction under mild conditions.
Collapse
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Huosheng Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Jiantao Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Xuncheng Zhu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Chan Shen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Zeng Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| |
Collapse
|