1
|
Dethe DH, Singh P, Joshi A, Biswas P. Ruthenium-Catalyzed Interrupted Transfer Hydrogenation: An Approach for Reductive Functionalization of Quinolinium and Napthyridinium Salts. J Org Chem 2024; 89:13167-13178. [PMID: 39258458 DOI: 10.1021/acs.joc.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Until now, a myriad of effective approaches have emerged for the functionalization of N-heteroaryl C-H bonds. In contrast, dearomatization and construction of fused heterocycles from activated heteroarenes is still a subject to explore. In this work, we present a refined approach for both dearomatization of N-heteroarenes and the synthesis of fused heterocycles from activated heteroarenes ruthenium catalysis using paraformaldehyde along with additive and base. Notably, quinolinium salts with a hydrogen at the C-4 position yield a methoxymethyl-substituted fused cyclic product through the Thorpe Ingold effect. An innovative aspect of this research is the dual functionality of paraformaldehyde as both a hydride donor and electrophile, utilizing readily available feedstock chemicals. A broad range of electron withdrawing and donating substituents was tolerable under standardized reaction conditions.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prabhakar Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Asha Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Proshanta Biswas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Tang T, Pei J, Zhang J, Qin Y, Liu J, Wang Q. A Regiodivergent Dearomative Trifunctionalization of Quinolinium Salts to Access Fused Tetrahydroquinoline Polycycles. Org Lett 2024; 26:7144-7148. [PMID: 39158211 DOI: 10.1021/acs.orglett.4c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Dearomative trifunctionalization of quinolinium salts is one of the most straightforward approaches to access biologically relevant multisubstituted tetrahydroquinolines. However, research in this field is still in its infancy. Here, we report a base-controlled regiodivergent dearomative trifunctionalization strategy for transforming quinoliniums into two kinds of structurally intriguing tetrahydroquinoline polycycles through a one-pot three-component cascade annulation. The key is the in situ generation of a "Nu-E-Nu" trifunctional reagent that can precisely identify the matched reactive sites of quinoliniums.
Collapse
Affiliation(s)
- Tiantian Tang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jiaqi Pei
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jianing Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yunlong Qin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jiying Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qilin Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Chen J, Yang J, Zhang M. Divergent Synthesis of Cyclopropanated Tetrahydroquinolines by Tandem Functionalization of Quinoline Derivatives. J Org Chem 2024. [PMID: 38754033 DOI: 10.1021/acs.joc.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Here, reported is a new method for divergent synthesis of functionalized tetrahydroquinolines (THQs), featuring a biomedically interesting azabicyclo[4.1.0]heptane core, proceeding with mild conditions, good substrate and functionality tolerance, and operational simplicity. Mechanistic studies suggest that the products are formed via carbonucleophilic 1,4-addition-induced dearomatization of quinolinium salts and intramolecular cyclopropanation with α-halo ketones followed by α-nucleophilic addition with different nucleophiles. The present work lays a foundation to access new N-heterocycles via the dearomative tandem functionalization of azaarenes.
Collapse
Affiliation(s)
- Jianjie Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| |
Collapse
|
4
|
Jia H, Tan Z, Zhang M. Reductive Functionalization of Pyridine-Fused N-Heteroarenes. Acc Chem Res 2024; 57:795-813. [PMID: 38394347 DOI: 10.1021/acs.accounts.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
ConspectusThe selective functionalization/transformation of ubiquitous pyridine-fused N-heteroarenes is a practical method to synthesize structurally novel N-heterocycles, which is important for the development of medicines, bioactive agents, agrochemicals, materials, ligands, sensors, pigments, dyes, etc. However, owing to thermodynamic stability, kinetic inertness, and lone electron pair-induced catalyst deactivation of the pyridine-fused N-heteroarenes, limited strategies (e.g., C-H activation/functionalization, electrophilic substitution, and the Minisci reaction) are available to realize the synthetic purpose and maintain the aromaticity of the final products. Moreover, the relevant transformations have limitations such as needing harsh reaction conditions, requiring the preinstallation of specific coupling agents containing transformable functionalities or directing groups, using less environmentally benign oxidants and/or acidic activators, and poor selectivity. Herein, considering that imines, enamines, radicals, and cyclic amines are generated during the reduction of pyridine-fused N-heteroarenes, the precise transformation of these reductive intermediates offers a fundamental basis for developing novel tandem reactions. Our group revealed that a slow reduction rate, synergistic catalysis, and controlled electroreduction are effective strategies for fulfilling the selective reductive functionalization of pyridine-fused N-heteroarenes. Thus, we established a series of new synthetic methods that provide diverse construction modalities for functionalized N-heterocycles. The striking features of these synthetic methods include high efficiency, atom economy, and the use of readily accessible N-heteroarenes as transformable feedstocks in the absence of flammable and pressurized H2 gas, alongside a promising potential of the obtained N-heterocyclic products. The present study would be appealing to the fields of synthetic organic chemistry, catalysis, biomedical chemistry, and functional materials. This Account describes the application of reductive dearomatization as substrate-activating and tandem reaction-initiating modes and summarizes the reductive functionalization of pyridine-fused N-heteroarenes via selective alkylation, arylation, and annulation at nitrogen, α, β, and other remote carbon sites achieved over the past 8 years. Details regarding the development of new reactions and their plausible mechanisms and perspectives are discussed. We hope our contributions to this field will aid in the further development of novel strategies for the functionalization/transformation of pyridine-fused N-heteroarenes and tackle the intractable challenges in this area.
Collapse
Affiliation(s)
- Huanhuan Jia
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
6
|
Wang M, Zhang M. Diastereoselective construction of carbo-bridged polyheterocycles by a three-component tandem annulation reaction. Org Biomol Chem 2023; 21:6342-6347. [PMID: 37497637 DOI: 10.1039/d3ob01013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
By a hydroamination-induced tandem annulation process, we herein report a new three-component reaction for room temperature construction of carbo-bridged polyheterocycles with exclusive diastereoselectivity, which features readily available feedstocks, catalyst-free conditions, good substrate and functionality compatibility, no need for transition metal catalysts, and high step and atom efficiency. The products are formed via initial formation of 1,2-dihydro-3H-pyrazol-3-one nucleophiles from but-2-ynedioates and hydrazine followed by 2,4-difunctionalization of N-heteroarenium salts. Given that the obtained products possess structurally important tetrahydroquinoline and pyranopyrazole motifs, the developed chemistry is anticipated to be further applied to the discovery of functional molecules including biomedical ones.
Collapse
Affiliation(s)
- Maorui Wang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
7
|
Kratena N, Marinic B, Donohoe TJ. Recent advances in the dearomative functionalisation of heteroarenes. Chem Sci 2022; 13:14213-14225. [PMID: 36545133 PMCID: PMC9749106 DOI: 10.1039/d2sc04638e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Dearomatisation reactions of (hetero)arenes have been widely employed as efficient methods to obtain highly substituted saturated cyclic compounds for over a century. In recent years, research in this area has shifted towards effecting additional C-C bond formation during the overall dearomative process. Moving away from classical hydrogenation-based strategies a wide range of reagents were found to be capable of initiating dearomatisation through nucleophilic addition (typically a reduction) or photochemically induced radical addition. The dearomatisation process gives rise to reactive intermediates which can be intercepted in an intra- or intermolecular fashion to deliver products with significantly increased molecular complexity when compared to simple dearomatisation. In this Perspective recent examples and strategies for the dearomative functionalisation of heteroaromatic systems will be discussed.
Collapse
Affiliation(s)
- Nicolas Kratena
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Bruno Marinic
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Timothy J Donohoe
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
8
|
Das S. Recent applications of quinolinium salts in the synthesis of annulated heterocycles. SYNOPEN 2022. [DOI: 10.1055/a-1834-2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Quinoline derivatives are frequently found in natural products and biologically active compounds, however, construction of quinoline fused polyheterocycles is the challenging goal in synthetic organic chemistry. In this regard, quinolinium salts meet the demand to a great level, as they can be synthesized readily and employed effectively for the rapid construction of condensed heterocyclic core. The present review focuses on recent (2015-2021) applications of different quinolinium salts that react with suitable partners to access diverse annulated products. Most of the reactions discussed here involve easily available starting materials, operationally simple, high atom efficiency and environmentally benign. Mechanistic aspects of representative transformations have also been highlighted for better understanding of reaction pathway.
Collapse
|
9
|
Mao W, Zhao H, Zhang M. Hydride transfer-initiated synthesis of 3-functionalized quinolines by deconstruction of isoquinoline derivatives. Chem Commun (Camb) 2022; 58:4380-4383. [PMID: 35297459 DOI: 10.1039/d2cc00127f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Under transition metal catalyst-free conditions, we herein present a hydride transfer-initiated construction of novel 3-(2-aminomethyl)aryl quinolines from N-isoquinolinium salts and 2-aminobenzaldehydes, proceeding with the merits of operational simplicity, high step and atom efficiency, good substrate and functional group compatibility, and mild conditions. The products are formed by reacting with the isoquinolyl motif as a two-carbon synthon along with the cleavage of its C3-N bond. Given the interesting applications of 3-aryl quinolines, the developed chemistry is anticipated to be further applied to develop new functional products.
Collapse
Affiliation(s)
- Wenhui Mao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
10
|
Gu LJ, Han HB, Bu ZW, Wang QL. Dearomative Periphery Modification of Quinolinium Salts to Assemble Ring-Encumbered Pyrrolidine-Tetrahydroquinoline Polycycles. Org Lett 2022; 24:2008-2013. [PMID: 35266396 DOI: 10.1021/acs.orglett.2c00464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report an unexpected dearomative periphery modification strategy for transforming quinolinium salts into structurally crowded pyrrolidine-tetrahydroquinoline polycyclic systems with complete regio- and diastereoselectivity. Importantly, the reaction pathway was regulated by simply tuning the substituents, achieving substituent-directed divergent synthesis. The notable features of this transformation include readily available starting materials, green conditions, a simple workup procedure, high bond- and ring-forming efficiency, and substituent-directed diverse synthesis.
Collapse
Affiliation(s)
- Li-Jie Gu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Hua-Bin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zhan-Wei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Qi-Lin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|