1
|
Ji DS, Zhang X, Zhang P, Bao X, Yuan Y, Huo C, Xu PF. Visible-Light-Induced [4 + 3]-Annulation of Carbonyl Ylides with Alkenyl Pyrazolinone for Constructing [4.2.1]-Oxo-Bridged Oxocine Skeleton. Org Lett 2025; 27:709-714. [PMID: 39763148 DOI: 10.1021/acs.orglett.4c04715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Herein, we present a visible-light-induced protocol for the synthesis of highly functionalized oxo-bridged oxocine skeletons. This method generates carbenes via visible-light-induced ortho-acyl diazo compounds, which are rapidly intercepted by the oxygen atom of an intermolecular acyl group to form a cyclic 1,3-dipole. The in situ generated highly reactive 1,3-dipole undergoes a facile formal [4 + 3] cycloaddition with alkenyl pyrazolinone, yielding [4.2.1]-oxo-bridged oxocine compounds.
Collapse
Affiliation(s)
- Dong-Sheng Ji
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xin Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Peiqin Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xiazhen Bao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
2
|
Do DT. One-Pot Synthesis of Chiral Spiro-Imidazolidinone Cyclohexenones. J Org Chem 2025; 90:529-536. [PMID: 39710980 DOI: 10.1021/acs.joc.4c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We have developed a simple and straightforward synthesis of chiral spiro-imidazolidinone cyclohexenones, featuring six contiguous stereocenters, from feedstock chemicals such as aminophenols, α,β-unsaturated aldehydes, and α-amino acids. Remarkably, this one-pot multicomponent reaction exhibits exceptional diastereoselectivity (>20:1 dr) and relies solely on an amino acid precursor as the chiral source, avoiding the use of transition metals or additional organocatalysts. This reaction is efficient and scalable, enabling synthesis on a gram-scale.
Collapse
Affiliation(s)
- Dung Tien Do
- Department of Chemistry, The Citadel, 171 Moultrie Street, Charleston, South Carolina 29409, United States
| |
Collapse
|
3
|
Zhao C, Zhong AQ, Xie DX, Ren H, Ni CC, Chen GS, Liu YL. Synthesis of Benzopyrone-Fused Hydrobenzo[ c, d]indoles via Cascade Annulation of p-Quinamines and 3-Formylchromones. Org Lett 2024; 26:7031-7036. [PMID: 39133549 DOI: 10.1021/acs.orglett.4c02591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed cascade annulation reaction between p-quinamines and 3-formylchromones was developed, affording a series of benzopyrone-fused hydrobenzo[c,d]indoles in moderate to high yields with excellent diastereoselectivity. This cascade reaction is efficient since two new rings as well as one C-N, one C═C, and two C-C bonds are created in a single step. The scale-up synthesis and versatile transformations of the products further demonstrated the practicality and utility of this approach.
Collapse
Affiliation(s)
- Cheng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Ai-Qing Zhong
- Guangdong Teachers College of Foreign Language and Arts, 463 Shougouling Road, Guangzhou 510640, People's Republic of China
| | - Ding-Xiong Xie
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Chen-Chen Ni
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Yun-Lin Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
4
|
Chen Q, Zhang Y, Song Y, Zhang Y, Su Z, Feng X, Liu X. Asymmetric Synthesis of Hydroindoles via Desymmetrizing [3+2] Annulation of p-Quinamines and Arylalkylketenes. Org Lett 2024. [PMID: 38606985 DOI: 10.1021/acs.orglett.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The asymmetric desymmetrizing [3+2] annulation reaction of p-quinamines and arylalkylketenes to synthesize hydroindoles was realized. Catalyzed by chiral bisguanidinium hemisalt via multiple hydrogen bond interactions, enantiomerically enriched products with reversal of diastereoselectivity in comparison with the racemic version were afforded in good yields under mild reaction conditions. Diaryl-substituted hydroindoles could also perform the Friedel-Crafts type of addition to give more complicated multicycles. Density functional theory calculations revealed that the enantio- and diastereoselectivity stem from varied hydrogen-bonding manners.
Collapse
Affiliation(s)
- Qianping Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanji Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yang Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Yuan WC, Zeng HY, Zhang YP, Zhao JQ, You Y, Yin JQ, Zhou MQ, Wang ZH. Synthesis of Benzofuro[3,2- b]indol-3-one Derivatives via Dearomative (3 + 2) Cycloaddition of 2-Nitrobenzofurans and para-Quinamines. Molecules 2024; 29:1163. [PMID: 38474676 DOI: 10.3390/molecules29051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
An efficient dearomative (3 + 2) cycloaddition of para-quinamines and 2-nitrobenzofurans has been developed. This reaction proceeds smoothly under mild conditions and affords a series of benzofuro[3,2-b]indol-3-one derivatives in good to excellent yields (up to 98%) with perfect diastereoselectivities (all cases > 20:1 dr). The scale-up synthesis and versatile derivatizations demonstrate the potential synthetic application of the protocol. A plausible reaction mechanism is also proposed to account for the observed reaction process. This work represents the first instance of the N-triggered dearomative (3 + 2) cycloaddition of 2-nitrobenzofurans.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hai-Ying Zeng
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jun-Qing Yin
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Xie ZY, Xuan J. Advances in heterocycle synthesis through photochemical carbene transfer reactions. Chem Commun (Camb) 2024; 60:2125-2136. [PMID: 38284428 DOI: 10.1039/d3cc06056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Heterocyclic skeletons are commonly found in various bioactive molecules and pharmaceutical compounds, making them crucial in areas such as medicinal chemistry, materials science, and the realm of natural product synthesis. In recent years, the rapid advancements of visible light methodologies in organic synthesis have shown promising potential for the development of light-induced carbene transfer reactions. This is particularly significant as most organic molecules do not absorb visible light. Free carbene, known for its high activity, is frequently utilized for insertion reactions or cyclopropanation reactions. This review focuses on the photochemical strategy for the construction of heterocyclic skeletons, specifically highlighting the methods that employ visible light-promoted carbene transfer reactions.
Collapse
Affiliation(s)
- Zi-Yi Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
7
|
Wang JM, Zhao Y, Li WP, Kong XJ, Yao CS, Zhang K. Synthesis of tetracyclic dibenzo[ b, f][1,4]oxazepine-fused β-lactams via visible-light-induced Staudinger annulation. Org Biomol Chem 2023; 21:7106-7114. [PMID: 37610712 DOI: 10.1039/d3ob01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An efficient visible-light-induced Staudinger [2 + 2] annulation reaction between α-diazo ketones and dibenzo[b,f][1,4]oxazepine/thiazepine-imines under catalyst-free conditions has been developed. This protocol provides a facile method to synthesize tetracyclic dibenzo[b,f][1,4]oxazepine/thiazepine-fused β-lactams bearing a quaternary carbon center with a broad substrate scope and high efficiency (37 examples, up to >99% yield).
Collapse
Affiliation(s)
- Jiao-Mei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, P. R China
| | - Yu Zhao
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shanxi 716000, P. R. China
| | - Wen-Ping Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| | - Xiang-Jun Kong
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, P. R China
| | - Chang-Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| |
Collapse
|
8
|
Oxygen-Doped Carbon Nitride for Enhanced Photocatalytic Activity in Visible-Light-Induced Decarboxylative Annulation Reactions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Wang J, Chen Y, Yao C, Zhang K. Catalyst‐free Synthesis of Benzothiazolopyrimidines
via
Visible‐Light‐Induced Wolff Rearrangement/[4+2] Cycloaddition Process. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiao‐Mei Wang
- School of Materials and Chemical Engineering Xuzhou University of Technology Xuzhou 221018 P. R China
| | - Yang‐Xu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| | - Chang‐Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| |
Collapse
|
10
|
Lin H, Gu J, Luo S, Gu Q, Cao X, Ge Y, Wang C, Yuan C, Wang H. DBU‐Catalyzed [3+2] Cycloaddition of Benzoaurones with 3‐Homoacyl Coumarins: Synthesis of Spiro[Benzofuranone‐Cyclopentane] Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202201599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huawei Lin
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Jing Gu
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Shan Luo
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Qilong Gu
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
- Medical Science and Technology Innovation Center Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Hai Wang
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| |
Collapse
|
11
|
Chen Y, Shi B, Yin H, Liu Y, Yu C, Zhang K, Li T, Yao C. Stereoselective synthesis of chiral sultam-fused dihydropyridinones via photopromoted NHC catalyzed [4 + 2] annulation. Org Chem Front 2022. [DOI: 10.1039/d2qo00908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photopromoted NHC catalyzed asymmetric [4+2] annulation of saccharine-derived azadienes and α-diazoketones was developed, affording the corresponding sultam-fused dihydropyridinones efficiently (up to 80% yield, 99% ee and >20 : 1 d.r.).
Collapse
Affiliation(s)
- Yangxu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Bai Shi
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Huiping Yin
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Yinping Liu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| |
Collapse
|