1
|
Wei K, Cheng Z, Zhang X, Huang Q, Du P. Direct π-extension of a conjugated carbon nanohoop using a zipper method. Chem Commun (Camb) 2024; 60:14248-14251. [PMID: 39535907 DOI: 10.1039/d4cc04976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The π-extension of carbon nanorings towards ultrashort carbon nanotubes (CNTs) is a great challenge for synthetic chemists. Herein, we report the synthesis, characterization, and properties of a nanographene-embedded carbon nanoring (NECR) by a direct zipper method. In this approach, a long linear phenyl chain is fused onto the CPP backbone by a simple Scholl reaction, similar to zipping two pieces of fabric together. Its photophysical properties were studied by UV-vis and photoluminescence spectroscopy. The potential application of NECR in electron-transport devices were further investigated.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zaitian Cheng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xinyu Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Qiang Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Kodali PK, Choppella S, Ankita, Kumar D, Pandey UK, Ravva MK, Singh SP. Ambipolar macrocycle derived from spiro-xanthene and carbazole: synthesis, structure-property relationships, electronic properties and host-guest investigation. Chem Commun (Camb) 2024; 60:11726-11729. [PMID: 39318232 DOI: 10.1039/d4cc03440f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
For the first time, we present the detailed synthesis, photophysical, electrochemical, host-guest and charge transport properties of spiro[fluorene-9,9'-xanthene] (SFX) and carbazole macrocycle SPS-NR-02. The electron and hole transport values measured using the space charge limited current (SCLC) method resulted in ambipolar charge transport with an electron to hole mobility ratio of 0.39.
Collapse
Affiliation(s)
- Phani Kumar Kodali
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | | | - Ankita
- Department of Electrical Engineering, School of Engineering, Shiv Nadar Institution of Eminence, Delhi NCR, 201314, India
| | - Deepak Kumar
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Upendra Kumar Pandey
- Department of Electrical Engineering, School of Engineering, Shiv Nadar Institution of Eminence, Delhi NCR, 201314, India
| | | | - Surya Prakash Singh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
3
|
Fang P, Cheng Z, Peng W, Xu J, Zhang X, Zhang F, Zhuang G, Du P. A Strained Donor-Acceptor Carbon Nanohoop: Synthesis, Photophysical and Charge Transport Properties. Angew Chem Int Ed Engl 2024; 63:e202407078. [PMID: 38771270 DOI: 10.1002/anie.202407078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Herein, we report the synthesis of a novel intramolecular donor-acceptor (D-A) system ([12]CPP-8TPAOMe) based on cycloparaphenylenes (CPPs) grafted with eight di(4-methoxyphenyl)amino groups (TPAOMe) as donors. Compared to [12]CPP, D-A nanohoop exhibited significant changes in physical properties, including a large redshift (>78 nm) in the fluorescence spectrum and novel positive solvatofluorochromic properties with a maximum peak ranging from 484 nm to 546 nm. The potential applications of [12]CPP-8TPAOMe in electron- and hole-transport devices were further investigated, and its bipolar behavior as a charge transport active layer was clearly observed.
Collapse
Affiliation(s)
- Pengwei Fang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Zaitian Cheng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wei Peng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Jixian Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Xinyu Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Fapei Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Guilin Zhuang
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| |
Collapse
|
4
|
Roy R, Brouillac C, Jacques E, Quinton C, Poriel C. π-Conjugated Nanohoops: A New Generation of Curved Materials for Organic Electronics. Angew Chem Int Ed Engl 2024; 63:e202402608. [PMID: 38744668 DOI: 10.1002/anie.202402608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nanohoops, cyclic association of π-conjugated systems to form a hoop-shaped molecule, have been widely developed in the last 15 years. Beyond the synthetic challenge, the strong interest towards these molecules arises from their radially oriented π-orbitals, which provide singular properties to these fascinating structures. Thanks to their particular cylindrical arrangement, this new generation of curved molecules have been already used in many applications such as host-guest complexation, biosensing, bioimaging, solid-state emission and catalysis. However, their potential in organic electronics has only started to be explored. From the first incorporation as an emitter in a fluorescent organic light emitting diode (OLED), to the recent first incorporation as a host in phosphorescent OLEDs or as charge transporter in organic field-effect transistors and in organic photovoltaics, this field has shown important breakthroughs in recent years. These findings have revealed that curved materials can play a key role in the future and can even be more efficient than their linear counterparts. This can have important repercussions for the future of electronics. Time has now come to overview the different nanohoops used to date in electronic devices in order to stimulate the future molecular designs of functional materials based on these macrocycles.
Collapse
Affiliation(s)
- Rupam Roy
- Univ Rennes, CNRS, ISCR-UMR CNRS 6226, F-35000, Rennes, France
- Department of Chemistry, University of Florida, Gainesville, Florida, United States, 32603
| | | | | | | | - Cyril Poriel
- Univ Rennes, CNRS, ISCR-UMR CNRS 6226, F-35000, Rennes, France
| |
Collapse
|
5
|
Xia Z, Cheung KM, Chen H, Pun SH, Miao Q. A new armchair carbon nanobelt synthesized by tuning the regioselectivity of the Scholl reaction of quinquephenyl. Chem Commun (Camb) 2024; 60:4314-4317. [PMID: 38533657 DOI: 10.1039/d4cc00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new armchair carbon nanobelt is successfully synthesized by tuning the regioselectivity of the Scholl reaction of 1,1':2',1'':4'',1''':2''',1''''-quinquephenyl. This nanobelt exhibits a preferential binding affinity towards C70 over C60 as found from photoluminescence titration experiments.
Collapse
Affiliation(s)
- Zeming Xia
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China.
| | - Ka Man Cheung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China.
| | - Han Chen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China.
| | - Sai Ho Pun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China.
| | - Qian Miao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
6
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
7
|
Song W, Zhang X, Yang C, Yang Z, Wu L, Ge X, Xu T. Alkaline Membranes toward Electrochemical Energy Devices: Recent Development and Future Perspectives. ACS CENTRAL SCIENCE 2023; 9:1538-1557. [PMID: 37637731 PMCID: PMC10450879 DOI: 10.1021/acscentsci.3c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Indexed: 08/29/2023]
Abstract
Anion-exchange membranes (AEMs) that can selectively transport OH-, namely, alkaline membranes, are becoming increasingly crucial in a variety of electrochemical energy devices. Understanding the membrane design approaches can help to break through the constraints of undesired performance and lab-scale production. In this Outlook, the research progress of alkaline membranes in terms of backbone structures, synthesis methods, and related applications is organized and discussed. The evaluation of synthesis methods and description of membrane stability enhancement strategies provide valuable insights for structural design. Finally, to accelerate the deployment of relevant technologies in alkaline media, the future priority of alkaline membranes that needs to be addressed is presented from the perspective of science and engineering.
Collapse
Affiliation(s)
- Wanjie Song
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Xin Zhang
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Cui Yang
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Zhengjin Yang
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Liang Wu
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Xiaolin Ge
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Tongwen Xu
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
8
|
Fang P, Chen M, Yin N, Zhuang G, Chen T, Zhang X, Du P. Regulating supramolecular interactions in dimeric macrocycles. Chem Sci 2023; 14:5425-5430. [PMID: 37234903 PMCID: PMC10207885 DOI: 10.1039/d3sc00035d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Supramolecular behavior is highly dependent on many factors, including complicated microenvironments and weak interactions. Herein, we describe tuning supramolecular architectures of rigid macrocycles by synergistic effects of their geometric configurations, sizes, and guests. Two paraphenylene-based macrocycles are anchored onto different positions in a triphenylene derivative, resulting in dimeric macrocycles with different shapes and configurations. Interestingly, these dimeric macrocycles show tunable supramolecular interactions with guests. In solid state, a 2 : 1 host-guest complex was observed between 1a and C60/C70, while an unusual 2 : 3 host-guest complex 3C60@(1b)2 can be observed between 1b and C60. This work expands the scope of the synthesis of novel rigid bismacrocycles and provides a new strategy to construct different supramolecular systems.
Collapse
Affiliation(s)
- Pengwei Fang
- School of Environment and Civil Engineering, Dongguan University of Technology Dongguan 523808 Guangdong Province China
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui Province China
| | - Muqing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology Dongguan 523808 Guangdong Province China
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui Province China
| | - Nan Yin
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui Province China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology 18 Chaowang Road Hangzhou 310032 Zhejiang Province China
| | - Tianyun Chen
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui Province China
| | - Xinyu Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui Province China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui Province China
| |
Collapse
|
9
|
Zhang Y, Pun SH, Miao Q. The Scholl Reaction as a Powerful Tool for Synthesis of Curved Polycyclic Aromatics. Chem Rev 2022; 122:14554-14593. [PMID: 35960873 DOI: 10.1021/acs.chemrev.2c00186] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past decade has witnessed remarkable success in the synthesis of curved polycyclic aromatics through Scholl reactions which enable oxidative aryl-aryl coupling even in company with the introduction of significant steric strain. These curved polycyclic aromatics are not only unique objects of structural organic chemistry in relation to the nature of aromaticity but also play an important role in bottom-up approaches to precise synthesis of nanocarbons of unique topology. Moreover, they have received considerable attention in the fields of supramolecular chemistry and organic functional materials because of their interesting properties and promising applications. Despite the great success of Scholl reactions in synthesis of curved polycyclic aromatics, the outcome of a newly designed substrate in the Scholl reaction still cannot be predicted in a generic and precise manner largely due to limited understanding on the reaction mechanism and possible rearrangement processes. This review provides an overview of Scholl reactions with a focus on their applications in synthesis of curved polycyclic aromatics with interesting structures and properties and aims to shed light on the key factors that affect Scholl reactions in synthesizing sterically strained polycyclic aromatics.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sai Ho Pun
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
10
|
Wang L, Nagashima Y, Abekura M, Uekusa H, Konishi G, Tanaka K. Rhodium‐Catalyzed Intermolecular Cycloaromatization Route to Cycloparaphenylenes that Exhibit Aggregation‐Induced Emission. Chemistry 2022; 28:e202200064. [DOI: 10.1002/chem.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masato Abekura
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
11
|
Wang S, Li X, Wei K, Zhang X, Yang S, Zhuang G, Du P. Facile Synthesis of a Conjugated Macrocyclic Nanoring with Graphenic Hexabenzocoronene Sidewall as the Segment of [12,12] Carbon Nanotubes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shengda Wang
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Xingcheng Li
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Kang Wei
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Xinyu Zhang
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Shangfeng Yang
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Guilin Zhuang
- Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology Chemical Engineering 18 Chaowang Road 310032 Hangzhou CHINA
| | - Pingwu Du
- USTC: University of Science and Technology of China Chemistry and Materials Science & Engineering 96 Jinzhai Rd 430026 Hefei CHINA
| |
Collapse
|
12
|
Chen H, Shao M, Li H, Liu H, Wei WM, Zheng RH, Song M, Liu R, Lu D. Modular synthesis, racemization pathway, and photophysical properties of asymmetrically substituted cycloparaphenylenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03166c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The racemization pathways of asymmetrically substituted cycloparaphenylenes analysed by transition-state calculations (TS) revealed size-dependent rotation barriers.
Collapse
Affiliation(s)
- Hao Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| | - Mengqi Shao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| | - Huajun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| | - Hengxin Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| | - Wen-Mei Wei
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| | - Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China
| | - Mengmeng Song
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| | - Rui Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| | - Dapeng Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| |
Collapse
|
13
|
Abstract
Rearrangements in Scholl reaction are mostly serendipitous. The design of molecular precursors is what seems to guide the course of rearrangement. This review consolidates different classes of precursors used in Scholl reaction and their accompanying rearrangements that include aryl migration, migration followed by cyclization and skeletal rearrangements involving ring expansion, ring contraction and both, under the reaction conditions. The attempt in collating heretofore-reported examples in this review is to guide designing appropriate precursors to predictably achieve complex molecular structures or nanographenes or defect-nanographenes via rearrangement.
Collapse
Affiliation(s)
| | - Nagaraju Ponugoti
- Indian Institute of Technology Madras, Chemistry, Adyar, 600036, Chennai, INDIA
| |
Collapse
|