1
|
Curiel-Alegre S, de la Fuente-Vivas D, Khan AHA, García-Tojal J, Velasco-Arroyo B, Rumbo C, Soja G, Rad C, Barros R. Unveiling the capacity of bioaugmentation application, in comparison with biochar and rhamnolipid for TPHs degradation in aged hydrocarbons polluted soil. ENVIRONMENTAL RESEARCH 2024; 252:118880. [PMID: 38582421 DOI: 10.1016/j.envres.2024.118880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Persistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil. Previous research indicates that biochar and biosurfactants can increase bioremediation rates, while mixed consortia offer sequential degradation and higher hydrocarbon mineralization. The present investigation aimed to assess whether combining these strategies could further enhance degradation in aged, complex soil matrices. The bioaugmentation (BA) with bacterial consortium increased the TPHs degradation in aged soil (over 20% compared to natural attenuation - NA). However, co-application of BA with biochar and rhamnolipid higher did not show a statistically prominent synergistic effect. While biochar application facilitated the maintenance of hydrocarbon degrading bacterial consortium in soil, the present study did not identify a direct influence in TPHs degradation. The biochar application in contaminated soil contributed to TPHs adsorption. Rhamnolipid alone slightly increased the TPHs biodegradation with NA, while the combined bioaugmentation treatment with rhamnolipid and biochar increased the degradation between 27.5 and 29.8%. These findings encourage further exploration of combining bioaugmentation with amendment, like biochar and rhamnolipid, for remediating diverse environmental matrices contaminated with complex and aged hydrocarbons.
Collapse
Affiliation(s)
- Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; Research Group in Composting (UBUCOMP), University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Dalia de la Fuente-Vivas
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Javier García-Tojal
- Department of Chemistry, University of Burgos, Faculty of Sciences. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Gerhard Soja
- Institute for Chemical and Energy Engineering, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
2
|
Swoboda A, Zwölfer S, Duhović Z, Bürgler M, Ebner K, Glieder A, Kroutil W. Multistep Biooxidation of 5-(Hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid with H 2O 2 by Unspecific Peroxygenases. CHEMSUSCHEM 2024; 17:e202400156. [PMID: 38568785 DOI: 10.1002/cssc.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
5-(Hydroxymethyl)furfural (HMF) is a key platform chemical derived from renewable biomass sources, holding great potential as starting material for the synthesis of valuable compounds, thereby replacing petrochemical-derived counterparts. Among these valorised compounds, 2,5-furandicarboxylic acid (FDCA) has emerged as a versatile building block. Here we demonstrate the biocatalytic synthesis of FDCA from HMF via a one-pot three-step oxidative cascade performed via two operative steps under mild reaction conditions employing two unspecific peroxygenases (UPOs) using hydrogen peroxide as the only oxidant. The challenge of HMF oxidation by UPOs is the chemoselectivity of the first step, as one of the two possible oxidation products is only a poor substrate for further oxidation. The unspecific peroxygenase from Marasmius oreades (MorUPO) was found to oxidize 100 mM of HMF to 5-formyl-2-furoic acid (FFCA) with 95 % chemoselectivity. In the sequential one-pot cascade employing MorUPO (TON up to 13535) and the UPO from Agrocybe aegerita (AaeUPO, TON up to 7079), 100 mM of HMF were oxidized to FDCA reaching up to 99 % conversion and yielding 861 mg isolated pure crystalline FDCA, presenting the first example of a gram scale biocatalytic synthesis of FDCA involving UPOs.
Collapse
Affiliation(s)
- Alexander Swoboda
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Silvie Zwölfer
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Zerina Duhović
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Moritz Bürgler
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Katharina Ebner
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Anton Glieder
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Wolfgang Kroutil
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| |
Collapse
|
3
|
Geske L, Baier J, Boulos JC, Efferth T, Opatz T. Xylochemical Synthesis and Biological Evaluation of the Orchidaceous Natural Products Isoarundinin I, Bleochrin F, Blestanol K, and Pleionol. JOURNAL OF NATURAL PRODUCTS 2023; 86:131-137. [PMID: 36538372 DOI: 10.1021/acs.jnatprod.2c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The first total syntheses of the orchid-derived natural products isoarundinin I (1), (±)-bleochrin F ((±)-2), (±)-blestanol K ((±)-3), and (±)-pleionol ((±)-4) from renewable starting materials are reported, along with the evaluation of their biological activities. The total syntheses were based on regioselective aromatic bromination reactions in combination with a key acid-promoted regioselective intramolecular cyclization. The biological results suggest that isoarundinin I (1), (±)-blestanol K ((±)-3), and (±)-pleionol ((±)-4) have the potential to inhibit the growth of both sensitive and multidrug-resistant cancer cells.
Collapse
Affiliation(s)
- Leander Geske
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Joris Baier
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Joelle C Boulos
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
4
|
Bachmann J, Helbig A, Crumbach M, Krummenacher I, Braunschweig H, Helten H. Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials. Chemistry 2022; 28:e202202455. [PMID: 35943830 PMCID: PMC9825880 DOI: 10.1002/chem.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/11/2023]
Abstract
A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2'-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.
Collapse
Affiliation(s)
- Jonas Bachmann
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Merian Crumbach
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
5
|
Pollok D, Großmann LM, Behrendt T, Opatz T, Waldvogel SR. A General Electro-Synthesis Approach to Amaryllidaceae Alkaloids. Chemistry 2022; 28:e202201523. [PMID: 35662286 PMCID: PMC9543536 DOI: 10.1002/chem.202201523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Amaryllidaceae alkaloids appeal to organic chemists with their attractive structures and their impressive antitumor and acetylcholinesterase inhibitory properties. We demonstrate a highly versatile access to this family of natural products. A general protocol with high yields in a sustainable electro-organic key transformation on a metal-free anode to spirodienones facilitates functionalization to the alkaloids. The biomimetic syntheses start with the readily available, inexpensive biogenic starting materials methyl gallate, O-methyl tyramine, and vanillin derivatives. Through known dynamic resolutions, this technology provides access to both enantiomeric series of (epi-)martidine, (epi-)crinine, siculine, and galantamine, clinically prescribed for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Luca M. Großmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Torsten Behrendt
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
6
|
Lood K, Tikk T, Krüger M, Schmidt B. Methylene Capping Facilitates Cross-Metathesis Reactions of Enals: A Short Synthesis of 7-Methoxywutaifuranal from the Xylochemical Isoeugenol. J Org Chem 2022; 87:3079-3088. [PMID: 35037461 DOI: 10.1021/acs.joc.1c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four combinations of type-I olefins isoeugenol and 4-hydroxy-3-methoxystyrene with type-II olefins acrolein and crotonaldehyde were investigated in cross-metathesis (CM) reactions. While both type-I olefins are suitable CM partners for this transformation, we observed synthetically useful conversions only with type-II olefin crotonaldehyde. For economic reasons, isoeugenol, a cheap xylochemical available from renewable lignocellulose or from clove oil, is the preferred type-I CM partner. Nearly quantitative conversions to coniferyl aldehyde by the CM reaction of isoeugenol and crotonaldehyde can be obtained at ambient temperature without a solvent or at high substrate concentrations of 2 mol·L-1 with the second-generation Hoveyda-Grubbs catalyst. Under these conditions, the ratio of reactants can be reduced to 1:1.5 and catalyst loadings as low as 0.25 mol % are possible. The high reactivity of the isoeugenol/crotonaldehyde combination in olefin metathesis reactions was demonstrated by a short synthesis of the natural product 7-methoxywutaifuranal, which was obtained from isoeugenol in a 44% yield over five steps. We suggest that the superior performance of crotonaldehyde in the CM reactions investigated can be rationalized by "methylene capping", i.e., the steric stabilization of the propagating Ru-alkylidene species.
Collapse
Affiliation(s)
- Kajsa Lood
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Triin Tikk
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Mandy Krüger
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|