1
|
Ghaffarkhah A, Hashemi SA, Isari AA, Panahi-Sarmad M, Jiang F, Russell TP, Rojas OJ, Arjmand M. Chemistry, applications, and future prospects of structured liquids. Chem Soc Rev 2024; 53:9652-9717. [PMID: 39189110 DOI: 10.1039/d4cs00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Structured liquids are emerging functional soft materials that combine liquid flowability with solid-like structural stability and spatial organization. Here, we delve into the chemistry and underlying principles of structured liquids, ranging from nanoparticle surfactants (NPSs) to supramolecular assemblies and interfacial jamming. We then highlight recent advancements related to the design of intricate all-liquid 3D structures and examine their reconfigurability. Additionally, we demonstrate the versatility of these soft functional materials through innovative applications, such as all-liquid microfluidic devices and liquid microreactors. We envision that in the future, the vast potential of the liquid-liquid interface combined with human creativity will pave the way for innovative platforms, exemplified by current developments like liquid batteries and circuits. Although still in its nascent stages, the field of structured liquids holds immense promise, with future applications across various sectors poised to harness their transformative capabilities.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
2
|
Gu P, Luo X, Zhou S, Wang D, Li Z, Chai Y, Zhang Y, Shi S, Russell TP. Stabilizing Liquids Using Interfacial Supramolecular Assemblies. Angew Chem Int Ed Engl 2023; 62:e202303789. [PMID: 37198522 DOI: 10.1002/anie.202303789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023]
Abstract
Stabilizing liquids based on supramolecular assembly (non-covalent intermolecular interactions) has attracted significant interest, due to the increasing demand for soft, liquid-based devices where the shape of the liquid is far from the equilibrium spherical shape. The components comprising these interfacial assemblies must have sufficient binding energies to the interface to prevent their ejection from the interface when the assemblies are compressed. Here, we highlight recent advances in structuring liquids based on non-covalent intermolecular interactions. We describe some of the progress made that reveals structure-property relationships. In addition to treating advances, we discuss some of the limitations and provide a perspective on future directions to inspire further studies on structured liquids based on supramolecular assembly.
Collapse
Affiliation(s)
- Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Kowloon, P. R. China
| | - Yuzhe Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
3
|
Agashe C, Varshney R, Sangwan R, Gill AK, Alam M, Patra D. Anisotropic Compartmentalization of the Liquid-Liquid Interface using Dynamic Imine Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8296-8303. [PMID: 35762368 DOI: 10.1021/acs.langmuir.2c00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid-liquid interface offers a fascinating avenue for generating hierarchical compartments. Herein, the dynamic imine chemistry is employed at the oil-water interface to investigate the effect of dynamic covalent bonds for modulating the droplet shape. The imine bond formation between oil-soluble aromatic aldehydes and water-soluble polyethyleneimine greatly stabilized the oil-water interface by substantially lowering the interfacial tension. The successful jamming of imine-mediated assemblies was observed when a compressive force was applied to the droplet. Thus, the anisotropic compartmentalization of the liquid-liquid interface was created, and it was later altered by changing the pH of the surrounding environment. Finally, a proof-of-concept demonstration of a pH-triggered cargo release across the interfacial membrane confirmed the feasibility of stimuli-responsive behavior of dynamic imine assemblies.
Collapse
Affiliation(s)
- Chinmayee Agashe
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Rohit Varshney
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Rekha Sangwan
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Arshdeep K Gill
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Mujeeb Alam
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|