1
|
Gu YW, Chen M, Deng W, Xu ZY. Computational Exploration of 1,2-Carboamine Carbonylation Catalyzed by Nickel. J Org Chem 2024; 89:4484-4495. [PMID: 38470436 DOI: 10.1021/acs.joc.3c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nickel-catalyzed carbonylation of alkenes is a stereoselective and regioselective method for the synthesis of amide compounds. Theoretical predictions with density functional theory calculations revealed the mechanism and origin of stereoselectivity and regioselectivity for the nickel-catalyzed carbonylation of norbornene. The carbonylation reaction proceeds through oxidative addition, migration insertion of alkenes, and subsequent reduction elimination to afford cis-carbonylation product. The C-N bond activation of amides is unfavorable because the oxidative addition ability of the C-C bond is stronger than that of the C-N bond. The determining step of stereoselectivity is the migratory insertion of the strained olefin. The structural analysis shows that steroselectivity is controlled by the steric hindrance of methyl groups to olefins and substituents to IMes in ligands.
Collapse
Affiliation(s)
- Yi-Wen Gu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Man Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Zheng-Yang Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| |
Collapse
|
2
|
Mei Y, Chen X, Wei R, Chang XY, Tao L, Liu LL. An Isolable Radical Anion Featuring a 2-Center-3-Electron π-Bond without a Clearly Defined σ-Bond. Angew Chem Int Ed Engl 2023; 62:e202315555. [PMID: 37942957 DOI: 10.1002/anie.202315555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Featuring an extra electron in the π* antibonding orbital, species with a 2-center-3-electron (2c3e) π bond without an underlying σ bond are scarcely known. Herein, we report the synthesis, isolation and characterization of a radical anion salt [K(18-C-6)]+ {[(HCNDipp)2 Si]2 P2 }⋅- (i.e. [K(18-C-6)]+ 3⋅- ) (18-C-6=18-crown-6, Dipp=2,6-diisopropylphenyl), in which 3⋅- features a perfectly planar Si2 P2 four-membered ring. This species represents the first example of a Si- and P-containing analog of a bicyclo[1.1.0]butane radical anion. The unusual bonding motif of 3⋅- was thoroughly investigated via X-ray diffraction crystallography, electron paramagnetic resonance spectroscopy (EPR), and calculations by density functional theory (DFT), which collectively unveiled the existence of a 2c3e π bond between the bridgehead P atoms and no clearly defined supporting P-P σ bond.
Collapse
Affiliation(s)
- Yanbo Mei
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry and Dongguan Key Laboratory for Data Science and Intelligent Medicine, Great Bay University, Dongguan, 523000, China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Rui Wei
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Yong Chang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lizhi Tao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Liu Q, Onishi K, Miyazawa Y, Wang Z, Hatano S, Abe M. Energetically More Stable Singlet Cyclopentane-1,3-diyl Diradical with π-Single Bonding Character than the Corresponding σ-Single Bonded Compound. J Am Chem Soc 2023. [PMID: 37967336 DOI: 10.1021/jacs.3c10971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Carbon-carbon σ-single bonds are crucial for constructing molecules like ethane derivatives (R3C-CR3), which are composed of tetrahedral four-coordinate carbons. Molecular functions, such as light absorption or emission, originate from the π-bonds existing in ethylene derivatives (R2C═CR2). In this study, a relatively stable cyclopentane-1,3-diyl species with π-single bonding system (C-π-C) with planar four-coordinate carbons is constructed. This diradicaloid is energetically more stable than the corresponding σ-single bonding system. The π-electron single bonding system provides deeper insights into the chemical bonding and the physical properties derived from the small energy gaps between the bonding and antibonding molecular orbitals.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Keita Onishi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Yuki Miyazawa
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Zhe Wang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Sayaka Hatano
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| |
Collapse
|
4
|
Lovrinčević V, Guo Y, Vuk D, Škorić I, Ma J, Basarić N. 3-Substituted 2-Aminonaphthalene Photocages for Carboxylic Acids and Alcohols; Decaging Mechanism and Potential Applications in Synthesis. J Org Chem 2023; 88:15176-15188. [PMID: 37831436 DOI: 10.1021/acs.joc.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
3-Hydroxymethyl-2-aminonaphthalene photocage (photoremovable protecting group) 2 was synthesized and transformed to different ethers and esters to investigate the applicability to decage alcohols and carboxylic acids, respectively. The photoelimination of carboxylic acids takes place relatively efficiently (ΦR = 0.11) upon excitation with near-visible light, contrary to the elimination of alcohols. The scope of the decaging of both alcohols and esters was demonstrated on several examples, including aliphatic and aromatic substrates, carbohydrates, and nonsteroidal anti-inflammatory drugs. The photophysical properties of the photocage and its models, methyl ether 4a and acetyl ester 5a, were investigated. The fluorescence quantum yields (Φf = 0.40-0.002) were found to be reversely proportional to the efficiency of elimination of OH, alcohols, or carboxylic acids. The decaging photochemical reaction mechanism was investigated experimentally by transient absorption techniques with time scales from femtoseconds to seconds and computationally on the TD-DFT level of theory. The photoelimination of carboxylates takes place directly in the singlet excited state by a homolytic cleavage producing a radical pair within 1 ns. The subsequent electron transfer gives rise to aminonaphthalene carbocation and the carboxylate. A wide scope of substrates that can be decaged relatively efficiently with near-visible light and the chromo-orthogonal compatibility of aminonaphthalene and aniline derivatives render these photocages potentially applicable in organic synthesis or biology.
Collapse
Affiliation(s)
- Vilma Lovrinčević
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Yan Guo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710119, China
| | - Dragana Vuk
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710119, China
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Liu Q, Wang Z, Abe M. Impacts of Solvent and Alkyl Chain Length on the Lifetime of Singlet Cyclopentane-1,3-diyl Diradicaloids with π-Single Bonding. J Org Chem 2022; 87:1858-1866. [PMID: 35001629 DOI: 10.1021/acs.joc.1c02895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The singlet 2,2-dialkoxycyclopentane-1,3-diyl diradicaloids are not only the important key intermediates in the process of bond homolysis but are also attracting attention as π-single bonding compounds. In the present study, the effects of solvent viscosity η (0.24-125.4 mPa s) and polarity π* (-0.11 to 1.00 kcal mol-1) on the reactivity of localized singlet diradicaloids were thoroughly investigated using 18 different solvents including binary mixed solvent systems containing ionic liquids. In low-η solvents (η < 1 mPa s), the lifetimes of singlet diradicaloids, which are determined by the rate constant for the isomerization of π-single-bonded singlet diradicaloids to the σ-bonded isomer, were substantially dependent on π*. Slower isomerization was observed in more polar solvents. In high-η solvents (η > 2 mPa s), the rate of isomerization was largely influenced by η in addition to π*. Slower isomerization was observed in more viscous solvents. Experimental results demonstrated the crucial roles of both solvent polarity and viscosity in the reactivity of singlet diradicaloids and thus clarified the characters of singlet diradicaloids and molecular motions during the chemical transformation. The dynamic solvent effect was further proved by a long alkyl chain introduced at a remote position of the reaction site.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Zhe Wang
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|