1
|
Asad M, Arshad MN, Asiri AM, Rahman MM, Kumaran S, Thorakkattil Neerankuzhiyil MM. Chitosan-Cu Catalyzed Novel Ferrocenated Spiropyrrolidines: Green Synthesis, Single Crystal X-ray Diffraction, Hirshfeld Surface and Antibacterial Studies. Polymers (Basel) 2023; 15:polym15020429. [PMID: 36679308 PMCID: PMC9867216 DOI: 10.3390/polym15020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Chitosan-bounded copper (chitosan-Cu) was introduced for green synthesis of novel ferrocenated spiropyrrolidine hybrids, namely 3'-(4-.bromobenzoyl)-5'-(4-hydroxybenzyl)-4'-ferrocenylspiro[indoline-3,2'-pyrrolidin]-2-one and 3'-(4-bromobenzoyl)-4'-ferrocenylspiro[indoline-3,2'-pyrrolidin]-2-one, in good yield. A one-pot three-component 1,3-dipolar cycloaddition reaction was employed for the formation of spiropyrrolidines from 1-(4-bromophenyl)-ferrocene-prop-2-en-1-one and azomethine ylides, which were developed in situ from tyrosine, glycine, and isatin, respectively. Various spectroscopic methods were used to establish the structures of spiropyrrolidines, and a single crystal X-ray diffraction study of a spiropyrrolidine provided additional confirmation. The crystallographic study revealed that compound 3a has one independent molecule in its unit cell, which is correlated with Hirshfeld surface analysis, and describes intramolecular contacts adversely. The highly yielded products in green conditions were determined for their antibacterial significance and were found to have good activity against Gram-positive and Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddauh 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.); (M.M.T.N.)
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddauh 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddauh 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddauh 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Snigdha Kumaran
- Research & Postgraduate Department of Chemistry, MES Kalladi College, Mannarkkad 678583, India
| | | |
Collapse
|
2
|
Ariyarathna JP, Alom NE, Roberts LP, Kaur N, Wu F, Li W. Lewis Acid-Catalyzed Halonium Generation for Morpholine Synthesis and Claisen Rearrangement. J Org Chem 2022; 87:2947-2958. [PMID: 35142512 PMCID: PMC9205334 DOI: 10.1021/acs.joc.1c02804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We disclose here practical strategies toward the synthesis of morpholines and Claisen rearrangement products based on the divergent reactivity of a common halonium intermediate. These reactions employ widely available alkenes in a Lewis acid-catalyzed halo-etherification process that can then transform them into the desired products with exceptional regioselectivity for both activated and unactivated olefins. Our mechanistic probe reveals an interesting regiochemical kinetic resolution process.
Collapse
Affiliation(s)
- Jeewani P Ariyarathna
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Nur-E Alom
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Leo P Roberts
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Navdeep Kaur
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fan Wu
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Wei Li
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
3
|
Soleymani Movahed F, Foo SW, Mori S, Ogawa S, Saito S. Phosphorus-Based Organocatalysis for the Dehydrative Cyclization of N-(2-Hydroxyethyl)amides into 2-Oxazolines. J Org Chem 2021; 87:243-257. [PMID: 34882422 DOI: 10.1021/acs.joc.1c02318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal-free, biomimetic catalytic protocol for the cyclization of N-(2-hydroxyethyl)amides to the corresponding 2-oxazolines (4,5-dihydrooxazoles), promoted by the 1,3,5,2,4,6-triazatriphosphorine (TAP)-derived organocatalyst tris(o-phenylenedioxy)cyclotriphosphazene (TAP-1) has been developed. This approach requires less precatalyst compared to the reported relevant systems, with respect to the phosphorus atom (the maximum turnover number (TON) ∼ 30), and exhibits a broader substrate scope and higher functional-group tolerance, providing the functionalized 2-oxazolines with retention of the configuration at the C(4) stereogenic center of the 2-oxazolines. Widely accessible β-amino alcohols can be used in this approach, and the cyclization of N-(2-hydroxyethyl)amides provides the desired 2-oxazolines in up to 99% yield. The mechanism of the reaction was studied by monitoring the reaction using spectral and analytical methods, whereby an 18O-labeling experiment furnished valuable insights. The initial step involves a stoichiometric reaction between the substrate and TAP-1, which leads to the in situ generation of the catalyst, a catechol cyclic phosphate, as well as to a pyrocatechol phosphate and two possible active intermediates. The dehydrative cyclization was also successfully conducted on the gram scale.
Collapse
Affiliation(s)
| | - Siong Wan Foo
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shogo Mori
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Saeko Ogawa
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|