1
|
Wang J, Wang S, Li S, Zhao J, Ying J. Cu/Pd-Catalyzed Domino Carbonylative Synthesis of Polycyclic Carbonyl-Containing Quinolin-2(1 H)-one Scaffolds from α-Bromocarbonyls. J Org Chem 2024; 89:17878-17884. [PMID: 39575616 DOI: 10.1021/acs.joc.4c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A novel Cu/Pd-catalyzed domino radical cyclization and C-H carbonylation of α-bromocarbonyls has been developed, which enables the rapid incorporation of CO unit into polycyclic quinolin-2(1H)-one scaffolds. By using Mo(CO)6 as the CO source, the reaction proceeded smoothly to furnish various polycyclic carbonyl-containing quinolin-2(1H)-one derivatives in high yields. Notably, this method could be used in the late-stage modification of biologically active molecules such as estrone.
Collapse
Affiliation(s)
- Jianwei Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shangyuan Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuwei Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiajun Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University, Shengzhou Innovation Research Institute, Shengzhou 312400, China
| |
Collapse
|
2
|
Xian N, Deng GJ, Huang H. Formation of cyclopenta[ c]quinolines through visible-light-induced photoredox cascade bis-annulations of 1,7-enynes with sulfoxonium ylides. Org Biomol Chem 2024; 22:7618-7622. [PMID: 39221627 DOI: 10.1039/d4ob01294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel visible-light-driven photoredox-catalyzed cascade bicyclization of 1,7-enynes with aqueous sulfoxonium ylides is reported. The reaction is highly chemoselective with three new C-C bonds, two new rings, and an all-carbon quaternary stereocenter constructed in a one-pot fashion. This mild protocol features a remarkably broad substrate scope with good functional group tolerance, providing a general and practical approach to access various cyclopenta[c]quinolines.
Collapse
Affiliation(s)
- Ning Xian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
3
|
Jiang Q, Bao H, Peng Y, Zhou Y, Chen L, Liu Y. Demethylenative cyclization of 1,7-enynes using α-amino radicals as a traceless initiator enabled by Cu(I)-photosensitizers. Chem Commun (Camb) 2024; 60:6399-6402. [PMID: 38780373 DOI: 10.1039/d4cc01592d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A rare type of demethylenative intramolecular cyclization of 1,7-enynes to access quinoline-2-(1H)-ones has been successfully developed under the catalysis of P/N-heteroleptic Cu(I)-photosensitizers. Preliminary mechanistic experiments revealed that the key to the success of this protocol lay in the α-amino radical addition-triggered tandem process of intramolecular radical cyclization/1,5-HAT/β-fragmentation. This protocol provides a new avenue for the deconstructive cyclization of alkene derivatives.
Collapse
Affiliation(s)
- Qinfang Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yun Peng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Lang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Liu Q, Ni Q, Zhou Y, Chen L, Xiang S, Zheng L, Liu Y. P/N-heteroleptic Cu(I)-photosensitizer-catalyzed domino radical relay annulation of 1,6-enynes with aryldiazonium salts. Org Biomol Chem 2023; 21:7960-7967. [PMID: 37750337 DOI: 10.1039/d3ob01177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A visible-light driven photocatalytic construction of benzo[b]fluorenones from 1,6-enynes and aryldiazonium salts has been achieved via a P/N-heteroleptic Cu(I)-photosensitizer-catalyzed domino radical relay annulation process. Preliminary mechanistic studies revealed that the aryl radicals in situ generated from aryldiazonium salts with the excited state of the Cu(I)-photosensitizer played a dual role of a radical initiator and a radical terminator in the concise construction of the highly fused benzo[b]fluorenone scaffold.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Lang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Siwei Xiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
5
|
Xiang S, Ni Q, Liu Q, Zhou S, Wang H, Zhou Y, Liu Y. Approach to Access Benzo[ j]phenanthridinones from 1,7-Enynes and Aryldiazonium Salts via a Domino Radical Relay Process Enabled by a P/N-Heteroleptic Cu(I)-Photosensitizer. J Org Chem 2023; 88:13248-13261. [PMID: 37616100 DOI: 10.1021/acs.joc.3c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A mild approach for the synthesis of benzo[j]phenanthridin-6(5H)-one derivatives from 1,7-enynes and aryldiazonium salts has been successfully developed involving a domino radical relay process enabled by a heteroleptic Cu(I)-photosensitizer under visible-light-driven photocatalytic conditions. Mechanistic studies disclosed that the oxidative quenching of the excited state of PS 4 with aryldiazonium salts via an SET process generated aryl radicals, which could play a radical initiator-terminator dual role within the whole radical relay process, namely, at the initial step acting as a radical donor to trigger the radical addition to the olefin moieties of 1,7-enynes while at the final stage serving as a radical acceptor to complete the cyclization.
Collapse
Affiliation(s)
- Siwei Xiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qian Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Sicheng Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Huihui Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Wang S, Zhao J, Ying J, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of Polycyclic 3,4-Dihydroquinolin-2(1 H)-one Scaffolds Containing Perfluoroalkyl and Carbonyl Units. Org Lett 2023. [PMID: 37410885 DOI: 10.1021/acs.orglett.3c01879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
A palladium-catalyzed one-pot two-step radical mediated carbonylative cyclization of 1,7-enynes with perfluoroalkyl iodides and Mo(CO)6 has been developed for the construction of polycyclic 3,4-dihydroquinolin-2(1H)-one scaffolds. This method realizes a facile synthesis of various polycyclic 3,4-dihydroquinolin-2(1H)-one derivatives containing perfluoroalkyl and carbonyl units in high yields. Moreover, modifications of several bioactive molecules were demonstrated using this protocol.
Collapse
Affiliation(s)
- Shangyuan Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiajun Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
7
|
Wang S, Zhang J, Wang JS, Ying J, Wu XF. Palladium-Catalyzed Cascade Carbonylative Synthesis of Perfluoroalkyl and Carbonyl-Containing 3,4-Dihydroquinolin-2(1 H)-one Derivatives. Org Lett 2022; 24:8843-8847. [DOI: 10.1021/acs.orglett.2c03636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shangyuan Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiangjie Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian-Shu Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
8
|
Xie F, Sun Y, Song H, Dong S, Zhao Q, Liu J, Miao Y. Ligand- and Substrate-Controlled Chemodivergent Pd-Catalyzed Annulations of Cyclic β-Keto Esters with 3-Aryl-2 H-azirines. Org Lett 2021; 24:268-273. [PMID: 34889615 DOI: 10.1021/acs.orglett.1c03933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemodivergent Pd-catalyzed annulations of cyclic β-keto esters with 3-aryl-2H-azirines have been developed to provide rapid access to eight-membered ring lactams, bicyclic 3,4-dihydro-2H-pyrrole derivatives, and (E)-methyl [2-(2-oxocyclohexylidene)-2-phenylethyl]carbamates with high efficiency. The chemoselectivity can be determined by tuning the mono- or bisphosphine ligands as well as the substrate structure of cyclic β-keto esters.
Collapse
Affiliation(s)
- Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yajun Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Hanghang Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Shijie Dong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jiayi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yu Miao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|