1
|
Ariai J, Gellrich U. An Acceptor-Substituted N-Heterocyclic ortho-Quinodimethane: Pushing the Boundaries of Polarization in Donor-Acceptor-Substituted Polyenes. J Am Chem Soc 2024; 146:32859-32869. [PMID: 39540923 DOI: 10.1021/jacs.4c13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report the synthesis, isolation, and characterization of a stable donor-acceptor substituted ortho-quinodimethane (oQDM). This system with an imidazolidine scaffold as the donor can also be referred to as acceptor-substituted ortho-N-heterocyclic quinodimethane (oNHQ). We have examined the extent of polarization of the conjugated π-system using single-crystal X-ray diffraction, NMR and UV/vis spectroscopy, cyclic voltammetry, and DFT computations. The bond lengths in the phenyl linker do not exhibit the alternation typical of oQDMs. In addition, the 13C and 15N NMR shifts suggest significant charge separation, an interpretation supported by the diatropic ring current determined by NICSZZ(r) computations, which is characteristic of aromatic compounds. DFT calculations show that polarization is an electronic effect that is amplified by steric influences. More strikingly, the oxidation and reduction potentials of the push-pull substituted oQDM are virtually identical to those of authenticated anionic and cationic derivatives. The results therefore indicate that an aromatic zwitterionic structure represents the electronic structure more accurately than a neutral quinoidal Lewis structure, which indicates that the acceptor-substituted oNHQ is a rare example of an organic zwitterion in which the centers of charge are in conjugation. The ambiphilic reactivity of the acceptor-substituted oNHQ, which is evidenced by the dehydrogenation of ammonia borane and the addition of phenylacetylene via heterolytic C-H bond cleavage, further supports its notation as an organic zwitterion and is reminiscent of frustrated Lewis pairs (FLPs). Thus, the acceptor-substituted oNHQ can be considered to be an intramolecular carbogenic FLP in terms of its reactivity.
Collapse
Affiliation(s)
- Jama Ariai
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Urs Gellrich
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
- Fachgebiet Organische Chemie, Universität Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
2
|
Genoux A, Severin K. Nitrous oxide as diazo transfer reagent. Chem Sci 2024:d4sc04530k. [PMID: 39156938 PMCID: PMC11323477 DOI: 10.1039/d4sc04530k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Nitrous oxide, commonly known as "laughing gas", is formed as a by-product in several industrial processes. It is also readily available by thermal decomposition of ammonium nitrate. Traditionally, the chemical valorization of N2O is achieved via oxidation chemistry, where N2O acts as a selective oxygen atom transfer reagent. Recent results have shown that N2O can also function as an efficient diazo transfer reagent. Synthetically useful methods for synthesizing triazenes, N-heterocycles, and azo- or diazo compounds were developed. This review article summarizes significant advancements in this emerging field.
Collapse
Affiliation(s)
- Alexandre Genoux
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
3
|
Wu X, Du J, Gao Y, Wang H, Zhang C, Zhang R, He H, Lu GM, Wu Z. Progress and challenges in nitrous oxide decomposition and valorization. Chem Soc Rev 2024; 53:8379-8423. [PMID: 39007174 DOI: 10.1039/d3cs00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nitrous oxide (N2O) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel N2O reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent. In this review, we undertake a thorough evaluation of N2O treatment technologies from a holistic perspective. First, we summarize and update the recent progress in thermal decomposition, direct catalytic decomposition (deN2O), and selective catalytic reduction of N2O. The scope extends to the catalytic activity of emerging catalysts, including nanostructured materials and single-atom catalysts. Furthermore, we present a detailed account of the mechanisms and applications of room-temperature techniques characterized by low energy consumption and sustainable merits, including photocatalytic and electrocatalytic N2O reduction. This article also underscores the extensive and effective utilization of N2O resources in chemical synthesis scenarios, providing potential avenues for future resource reuse. This review provides an accessible theoretical foundation and a panoramic vision for practical N2O emission controls.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Yanxia Gao
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Tang Z, Surin I, Rasmussen A, Krumeich F, Kondratenko EV, Kondratenko VA, Pérez‐Ramírez J. Ceria‐Supported Gold Nanoparticles as a Superior Catalyst for Nitrous Oxide Production via Ammonia Oxidation. Angew Chem Int Ed Engl 2022; 61:e202200772. [DOI: 10.1002/anie.202200772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Zhenchen Tang
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Ivan Surin
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Asbjörn Rasmussen
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Evgenii V. Kondratenko
- Department of Catalyst Discovery and Reaction Engineering Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Vita A. Kondratenko
- Department of Catalyst Discovery and Reaction Engineering Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Javier Pérez‐Ramírez
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
5
|
Tang Z, Surin I, Rasmussen A, Krumeich F, Kondratenko EV, Kondratenko VA, Pérez-Ramírez J. Ceria‐Supported Gold Nanoparticles as a Superior Catalyst for Nitrous Oxide Production via Ammonia Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenchen Tang
- Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - Ivan Surin
- Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - Asbjörn Rasmussen
- Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - Frank Krumeich
- Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | | | | | - Javier Pérez-Ramírez
- ETH Zurich Institute for Chemical and Bioengineering ETH HönggerbergVladimir-Prelog-Weg 1HCI E125 CH-8093 Zurich SWITZERLAND
| |
Collapse
|
6
|
Monreal Corona R, Besalu E, Pla Quintana A, Poater A. A Predictive Chemistry DFT Study of the N 2O Functionalization for the Preparation of Triazolopyridine and Triazoloquinoline Scaffolds. Org Chem Front 2022. [DOI: 10.1039/d2qo00589a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The whole reaction mechanism of the functionalization of N2O for the synthesis of triazolopyridine and triazoloquinoline scaffolds has been unveiled by means of DFT calculations. The rate determining step of...
Collapse
|