1
|
Pardy JD, Tavsanli B, Sirianni QEA, Gillies ER. Self-immolative Polymer Hydrogels via In Situ Gelation. Chemistry 2024; 30:e202401324. [PMID: 39031736 DOI: 10.1002/chem.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Hydrogels are of interest for a wide range of applications. The ability to control when the hydrogel degrades can provide beneficial properties such as controlled degradation in the environment or the stimulated release of drugs or cells. Self-immolative polymers are a class of degradable polymers that undergo complete end-to-end depolymerization upon the application of a stimulus. They have been explored for hydrogel development, but the ability to prepare and selectively degrade self-immolative hydrogels under neutral aqueous conditions has so far been limited. We describe here the preparation of water-soluble polyglyoxylamides with cross-linkable pendent azides and their cross-linking to form hydrogels with 4-arm poly(ethylene glycol)s having unstrained and strained alkynes using copper-assisted and strain-promoted azide-alkyne click chemistry respectively. The influence of pendent azide density and solution polymer content on the resulting hydrogels was evaluated. A polyglyoxylamide with a 70 : 30 ratio of pendent hydroxyl:azide successfully provided hydrogels with compressive moduli ranging from 1.3-6.3 kPa under copper-free conditions at 10-20 % (w/w) of polymer in phosphate-buffered saline. Selective depolymerization and degradation of the hydrogels upon irradiation with light was demonstrated, resulting in reductions in the compressive moduli and the release of depolymerization products that were detected by NMR spectroscopy.
Collapse
Affiliation(s)
- Jared D Pardy
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, N6A 5B9, London, Ontario, Canada
| | - Burak Tavsanli
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., N6A 5B7, London, Ontario, Canada
| | - Quinton E A Sirianni
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., N6A 5B7, London, Ontario, Canada
| | - Elizabeth R Gillies
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, N6A 5B9, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., N6A 5B7, London, Ontario, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., N6A 5B9, London, Ontario, Canada
| |
Collapse
|
2
|
Liu L, Li Z, Yang B, Jia X, Wang S. Recent Research Progress on Polyamidoamine-Engineered Hydrogels for Biomedical Applications. Biomolecules 2024; 14:620. [PMID: 38927024 PMCID: PMC11201556 DOI: 10.3390/biom14060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.
Collapse
Affiliation(s)
- Li Liu
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Zhiling Li
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Baiyan Yang
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Xiaoqing Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
3
|
Deng Z, Gillies ER. Emerging Trends in the Chemistry of End-to-End Depolymerization. JACS AU 2023; 3:2436-2450. [PMID: 37772181 PMCID: PMC10523501 DOI: 10.1021/jacsau.3c00345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Over the past couple of decades, polymers that depolymerize end-to-end upon cleavage of their backbone or activation of a terminal functional group, sometimes referred to as "self-immolative" polymers, have been attracting increasing attention. They are of growing interest in the context of enhancing polymer degradability but also in polymer recycling as they allow monomers to be regenerated in a controlled manner under mild conditions. Furthermore, they are highly promising for applications as smart materials due to their ability to provide an amplified response to a specific signal, as a single sensing event is translated into the generation of many small molecules through a cascade of reactions. From a chemistry perspective, end-to-end depolymerization relies on the principles of self-immolative linkers and polymer ceiling temperature (Tc). In this article, we will introduce the key chemical concepts and foundations of the field and then provide our perspective on recent exciting developments. For example, over the past few years, new depolymerizable backbones, including polyacetals, polydisulfides, polyesters, polythioesters, and polyalkenamers, have been developed, while modern approaches to depolymerize conventional backbones such as polymethacrylates have also been introduced. Progress has also been made on the topological evolution of depolymerizable systems, including the introduction of fully depolymerizable block copolymers, hyperbranched polymers, and polymer networks. Furthermore, precision sequence-defined oligomers have been synthesized and studied for data storage and encryption. Finally, our perspectives on future opportunities and challenges in the field will be discussed.
Collapse
Affiliation(s)
- Zhengyu Deng
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R. Gillies
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
4
|
Gong J, Borecki A, Gillies ER. Self-Immolative Hydrogels with Stimulus-Mediated On-Off Degradation. Biomacromolecules 2023; 24:3629-3637. [PMID: 37418699 DOI: 10.1021/acs.biomac.3c00382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.
Collapse
Affiliation(s)
- Jue Gong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Aneta Borecki
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
5
|
Meng Y, Qi Z, Li Z, Niu Y, Wu M, Yuan Z, He G, Yu M, Jiang X. Tailored hydrogel composite membrane for the regulated crystallization of monosodium urate monohydrate within coffee's metabolites system. J Colloid Interface Sci 2023; 648:365-375. [PMID: 37301161 DOI: 10.1016/j.jcis.2023.05.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Herein, a facile bionic research platform with fabricated hydrogel composite membrane (HCM) is constructed to uncover the effects of the main components of coffee's metabolites on MSUM crystallization. Tailored and biosafety polyethylene glycol diacrylate/N-isopropyl acrylamide (PEGDA/NIPAM) HCM allows the proper mass transfer of coffee's metabolites and can well simulate the process of coffee's metabolites acting in the joint system. With the validations of this platform, it is shown that chlorogenic acid (CGA) can hinder the MSUM crystals formation from 45 h (control group) to 122 h (2 mM CGA), which is the most likely reason that reduces the risk of gout after long-term coffee consumption. Molecular dynamics simulation further indicates that the high interaction energy (Eint) between CGA and MSUM crystal surface and the high electronegativity of CGA both contribute to the restraint of MSUM crystal formation. In conclusion, the fabricated HCM, as the core functional materials of the research platform, presents the understanding of the interaction between coffee consumption and gout control.
Collapse
Affiliation(s)
- Yingshuang Meng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhibo Qi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhonghua Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuchao Niu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mengyuan Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhijie Yuan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mingyang Yu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, Liaoning 1160831, China.
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
6
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|