1
|
Xue HZ, Wen Z, Zhou XM, Ni HL, Chen L. In(III)-Catalyzed 1,2-Hydrophosphorylation of 3-Alkynyl-3-hydroxyisoindolinones to 3,3-Disubstituted Isoindolinones Featuring Both Phosphoryl and Alkynyl Groups at the C3-Position. J Org Chem 2025. [PMID: 39848927 DOI: 10.1021/acs.joc.4c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
We report a highly regioselective 1,2-addition of P(O)-H compounds to the in situ generated β,γ-alkynyl-α-ketimine derived from 3-alkynyl-3-hydroxyisoindolinones, which provided a general protocol for the preparation of 3,3-disubstituted isoindolinones featuring both phosphoryl and alkynyl groups at a quaternary carbon center. The use of only 2-5 mol % of an inexpensive catalyst (In(ClO4)3·8H2O or Bi(OTf)3) allowed the smooth output of the desired products under mild conditions (25 °C, 0.5-24 h) with a broad substrate scope (35 examples) in up to >99% yield. The obtained products could be further elaborated based on the alkyne moiety. The initial asymmetric trial indicated that the use of BINOL-derived CPA could enable an enantioselective induction in up to a 46% yield with 77% ee.
Collapse
Affiliation(s)
- Huan-Zhu Xue
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China
| | - Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China
| | - Xue-Mei Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jing An Road, Chengdu 610066, P. R. China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China
| |
Collapse
|
2
|
Wang Q, Pan YL, Liang RX, Hu YY, Jia YX. Synthesis of 3-propargyl isoindolinones by Pd/Cu-catalyzed enantioselective Heck/Sonogashira reaction of enamides. Org Biomol Chem 2024. [PMID: 39688115 DOI: 10.1039/d4ob01881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, we report an enantioselective Pd/Cu-catalyzed sequential Heck/Sonogashira coupling reaction of electron-rich enamides with terminal alkynes as substrates. This transformation proceeds smoothly to afford 3-propargyl isoindolinone derivatives bearing quaternary stereogenic centers in moderate to good yields (43-77% yield) and good to excellent enantioselectivity (up to 93% ee). Functional groups such as halogen atoms (F, Cl, and Br), thienyl, and silyl moieties are tolerated well. Synthetic transformations of the 3-propargyl isoindolinone product show the utility value of the reaction.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China.
| | - Ya-Lin Pan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China.
| | - Yuan-Yuan Hu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China.
| | - Yi-Xia Jia
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Jana NC, Herchel R, Bagh B. Cu(II) Coordination Polymers for the Selective Oxidation of Biomass-Derived Veratryl Alcohol in Green Solvents: A Sustainable Catalytic Approach. Inorg Chem 2024; 63:18615-18631. [PMID: 39325024 DOI: 10.1021/acs.inorgchem.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Four air-stable one-dimensional copper(II) coordination polymers (CP1-CP4) with azide linkers were synthesized using tridentate NNS and NNN ligands. Single-crystal X-ray diffraction (XRD) analysis confirmed the molecular structures of CP1, CP3, and CP4. In the presence of TEMPO, all four coordination polymers demonstrated effective catalytic activity for the selective aerobic oxidation of veratryl alcohol, a biomass model compound, under base-free conditions. CP4 exhibited the best catalytic efficiency. Oxidations were conducted at ambient temperature (40 °C) utilizing air as a sustainable oxidant. Selective oxidation of veratryl alcohol to veratraldehyde was also conducted in the presence of a catalytic amount of base (5 mol %), and enhanced reactivity was observed. The green solvents, acetone, and water, were used to maximize sustainability. The optimized reaction conditions were applied to broaden the substrate scope of various lignin model alcohols and substituted benzylic alcohols with wide electronic variability. CP4 exhibited high recyclability, consistently providing quantitative yields even after ten consecutive runs. The catalytic protocol demonstrated sustainability and environmental compatibility, as evidenced by a low E-factor (4.29) and a high Eco-scale score (90). Based on experimental evidence and theoretical calculations, a plausible catalytic cycle was proposed. Finally, the sustainability credentials of the different optimized reaction protocols were evaluated using the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, Khurda, Bhubaneswar 752050, Odisha, India
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, Khurda, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
4
|
Xie JQ, Wang BX, Liang RX, Jia YX. Copper-catalyzed asymmetric 1,2-arylboration of enamines: access to chiral borate-containing 3,3'-disubstituted isoindolinones. Org Biomol Chem 2024. [PMID: 39005048 DOI: 10.1039/d4ob00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
An enantioselective copper-catalyzed 1,2-arylboration reaction of enamines has been developed by employing (R)-xyl-BINAP as a chiral ligand. A number of chiral borate-containing 3,3'-disubstituted isoindolinones were obtained in moderate to good yields and good to excellent enantioselectivities from the reactions of N-(o-iodobenzoyl)enamines and bis(pinacolato)diboron (B2pin2) under mild reaction conditions. Synthetic transformations of the products were conducted to demonstrate the practicality of this reaction.
Collapse
Affiliation(s)
- Jia-Qi Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Bing-Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
5
|
Yang KC, Zheng SL, Wen Z, Zhang YS, Ni HL, Chen L. Dehydrative alkynylation of 3-hydroxyisoindolinones with terminal alkynes for the synthesis of 3-alkynylated 3,3-disubstituted isoindolinones. Org Biomol Chem 2024; 22:3453-3458. [PMID: 38596838 DOI: 10.1039/d4ob00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A brand-new procedure for the synthesis of 3-alkynylated 3,3-disubstituted isoindolinones has been disclosed via a HOTf or Fe(OTf)3-catalyzed dehydrative alkynylation of 3-hydroxyisoindolinones with terminal alkynes. Aryl, alkenyl and alkyl terminal alkynes are suitable to couple with a broad range of 3-hydroxyisoindolinones to afford the desired products in moderate to good yields. This protocol features the use of an inexpensive catalyst, mild reaction conditions, broad substrate scope and easy elaboration of the products.
Collapse
Affiliation(s)
- Kai-Cheng Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Shi-Lu Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Yu-Shan Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jing An Road, Chengdu 610066, P. R. China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| |
Collapse
|
6
|
Zhu Z, Wu Q, Song X, Ni Q. Thermodynamic Controlled Regioselective C1-Functionalization of Indolizines with 3-Hydroxyisoindolinones via Brønsted Acid Catalyzed aza-Friedel-Crafts Reaction. J Org Chem 2024; 89:2794-2799. [PMID: 38294192 DOI: 10.1021/acs.joc.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A Brønsted acid catalyzed aza-Friedel-Crafts reaction of indolizines with 3-hydroxyisoindolinones has been established, which constructs isoindolinone derivatives bearing a tetrasubstituted stereocenter in good to high yields and enantioselectivities. Notably, this strategy provides a new access to C1-functionalization of indolizines with excellent regioselectivities. Moreover, this intriguing C1-regioselective transformation was induced under thermodynamic control.
Collapse
Affiliation(s)
- Zhiming Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Qianling Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| |
Collapse
|
7
|
Bhosale VA, Císařová I, Kamlar M, Veselý J. Catalytic asymmetric addition to cyclic N-acyl-iminium: access to sulfone-bearing contiguous quaternary stereocenters. Chem Commun (Camb) 2022; 58:9942-9945. [PMID: 35983733 DOI: 10.1039/d2cc02667h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the first chiral phosphoric acid (CPA)-catalyzed asymmetric addition of α-fluoro(phenylsulfonyl)methane (FSM) derivatives to in situ generated cyclic N-acyliminium. This process enables metal-free expeditious access to sulfone and fluorine incorporating contiguous all substituted quaternary stereocenters ingrained in biorelevant isoindolinones in excellent stereoselectivities (up to 99% ee and up to 50 : 1 dr).
Collapse
Affiliation(s)
- Viraj A Bhosale
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Martin Kamlar
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| |
Collapse
|
8
|
Saidah M, Mardjan MID, Masson G, Parrain JL, Commeiras L. Enantioselective Construction of Tetrasubstituted Carbon Stereocenters via Chiral Phosphoric Acid-Catalyzed Friedel-Craft Alkylation of Indoles with 5-Substituted Hydroxybutyrolactams. Org Lett 2022; 24:5298-5303. [PMID: 35834747 DOI: 10.1021/acs.orglett.2c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first intermolecular organocatalytic enantioselective addition of indoles to prochiral 5-membered cyclic N-acyliminium ions, generated from 5-hydroxy-α,β-unsaturated pyrrolidin-2-ones, is reported hereinafter. The reaction proceeds smoothly with a range of 5-hydroxy-5-substituted-α,β-unsaturated pyrrolidin-2-ones and indoles using BINOL-derived phosphoric acid catalyst to afford α,β-unsaturated lactams embedding a tetrasubstituted stereogenic center in high yields and enantioselectivities.
Collapse
Affiliation(s)
- Milane Saidah
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jean-Luc Parrain
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Laurent Commeiras
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|
9
|
Hu W, Yan L, Zuo Y, Kong S, Pu Y, Tang Q, Wang X, He X, Shang Y. Rhodium(III)‐Catalyzed Three‐Component Cascade Annulation for Modular Assembly of N‐Alkoxylated 3‐Arylisoindolin‐1‐ones with Tetrasubstituted Carbon Center. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | - Yue Pu
- Anhui Normal University CHINA
| | | | | | | | | |
Collapse
|
10
|
Liu M, Li W, Huang M, Yan Y, Li M, Cao L, Zhang X. Enantioselective intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones. NEW J CHEM 2022. [DOI: 10.1039/d2nj00517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones provided isoindolinone fused tetrahydro β-carbolines with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|