1
|
Silalahi RPB, Kahlal S, Saillard JY, Liu CW. Structural Transformation of Metastable Two-Electron Superatom Au-Doped Cu-Rich Alloy Nanocluster. Molecules 2024; 29:4427. [PMID: 39339425 PMCID: PMC11433815 DOI: 10.3390/molecules29184427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The ability to fabricate bimetallic clusters with atomic precision offers promising prospects for elucidating the correlations between their structures and properties. Nevertheless, achieving precise control at the atomic level in the production of clusters, including the quantity of dopant, characteristic of ligands, charge state of precursors, and structural transformation, have remained a challenge. Herein, we report the synthesis, purification, and characterization of a new bimetallic hydride cluster, [AuCu11(H){S2P(OiPr)2}6(C≡CPh)3] (AuCu11H). The hydride position in AuCu11H was determined using DFT calculations. AuCu11H comprises a ligand-stabilized defective fcc Au@Cu11 cuboctahedron. AuCu11H is metastable and undergoes a spontaneous transformation through ligand exchange into the isostructural [AuCu11(Cl){S2P(OiPr)2}6(C≡CPh)3] (AuCu11Cl) and into the complete cuboctahedral [AuCu12{S2P(OiPr)2}6(C≡CPh)4]+ (AuCu12) through an increase in nuclearity. These structural transformations were tracked by NMR and mass spectrometry.
Collapse
Affiliation(s)
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes-UMR 6226, F-35000 Rennes, France;
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes-UMR 6226, F-35000 Rennes, France;
| | - C. W. Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan;
| |
Collapse
|
2
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
3
|
Xia Y, Xia XY, Fang JJ, Liu Z, Xie YP, Lu X. Anion-templated silver thiolated clusters effected by carboxylate ligands. Dalton Trans 2022; 51:14557-14562. [DOI: 10.1039/d2dt02194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under the guidance of anion templates V10O286- and SO42-, the novelty of assembly can be increased by using different carboxylate ligands. Herein, the synthesis, crystal structure and electrochemical properties of...
Collapse
|
4
|
Wu WH, Gao YQ, Lin YF, Yuan YY, Zhan CH, Jiang ZG. The mystery of Ph 3PS revealed in magic-size Ag–S cluster nucleation. Dalton Trans 2022; 51:17145-17149. [DOI: 10.1039/d2dt03418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PPh3S was employed to direct the regulation of {Ag32S3} cluster by slowing down the kinetic process of nucleation. The process that Agn(CCBut)m and traces of water induces breakage of PS from [Ag2(Ph3PS)4]2+ to generate {Ag32S3} was established.
Collapse
Affiliation(s)
- Wei-Hong Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China
| | - Yu-Quan Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China
| | - Yu-Fei Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China
| | - Yun-Yue Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China
| |
Collapse
|