1
|
Josephy T, Kumar R, Bleher K, Röhs F, Glaser T, Rajaraman G, Comba P. Synthesis, Characterization, and Reactivity of Bispidine-Iron(IV)-Tosylimido Species. Inorg Chem 2024; 63:12109-12119. [PMID: 38875304 DOI: 10.1021/acs.inorgchem.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Reported are the synthesis and detailed studies of the iron(IV)-tosylimido complexes of two isomeric pentadentate bispidine ligands (bispidines are 3,7-diazabicyclo[3.3.1]nonane derivatives). This completes a series of five tosylimido complexes with comparable pentadentate amine/pyridine ligands, where the corresponding [(L)FeIV═O]2+ oxidants have been studied in detail. The characterization of the two new complexes in solution (UV-vis-NIR, Mössbauer, HR-ESI-MS) shows that these oxidants have an intermediate spin (S = 1) electronic ground state. The reactivities have been studied as oxidants in C-H activation at 1,3-cyclohexadiene and nitrogen atom transfer to thioanisole. For the latter substrate, the entire set of data for the five ligands and for both nitrogen and oxygen atom transfer is now available and the interesting observation is that oxygen atom transfer is, as expected, generally faster than nitrogen atom transfer, with the exception of the two ligands that have four and three pyridine groups oriented parallel to the Fe-O and Fe-N axes. A thorough DFT analysis indicates that this is due to steric effects in the case of the [(L)FeIV═O]2+ species, which are less important in the [(L)FeIV═NTs]2+ compounds due to partial electron transfer from the thioanisole substrate to the iron(IV)-tosylimido oxidant.
Collapse
Affiliation(s)
- Thomas Josephy
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Katharina Bleher
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Fridolin Röhs
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
2
|
Saiz F, Bernasconi L. Catalytic properties of the ferryl ion in the solid state: a computational review. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarises the last findings in the emerging field of heterogeneous catalytic oxidation of light alkanes by ferryl species supported on solid-state systems such as the conversion of methane into methanol by FeO-MOF74.
Collapse
Affiliation(s)
- Fernan Saiz
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles 08290, Spain
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Sabapathi G, Venuvanalingam P. Oxidative C–C/C–X coupling in organometallic nickel complexes: insights from DFT. NEW J CHEM 2022. [DOI: 10.1039/d2nj02480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiIII and NiIV-center complexes prefer direct reductive elimination than reacting through five-coordinate intermediates. 32+ complex in the presence of Cl− undergoes Cl–Csp2 elimination preferably over Cl–Csp3 and Csp3–Csp2 elimination.
Collapse
Affiliation(s)
- Gopal Sabapathi
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|