Thiruppathi KP, Majumder SB. Microwave-Assisted Hydrothermal Synthesis of {100} and {111} Faceted LiFeO
2 Truncated Octahedra: Investigations on Volatile Organic Compound Sensing Performance.
Inorg Chem 2024;
63:4545-4556. [PMID:
38394687 DOI:
10.1021/acs.inorgchem.3c03714]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Growth of exposed crystal facets has received considerable attention because of their coordinatively unsaturated surface atoms and defect-related surface reactivities. Herein, LiFeO2 truncated octahedra exposed with 6 {100} facets and 8 {111} facets were prepared through a simple microwave-assisted hydrothermal method without using any additives, surfactants, and calcination processes. The detailed growth process revealed that the formation of LiFeO2 truncated octahedra occurred only at the optimized reaction temperature (180 °C), time (30 min), and reactant concentrations. The prepared LiFeO2 truncated octahedra showed excellent sensing responses toward aliphatic organic compounds compared to that against aromatic organic compounds and poor response to inorganic compounds. The response percentages of 150 ppm concentrations of acetone, ethanol, formaldehyde, and isopropyl alcohol are 81.84, 62.91, 62.68, and 69.41%, respectively, at a low operating temperature (100 °C). The presence of exposed facets with their coordinatively unsaturated Li/Fe surface atoms such as 5-fold {100}, 3-fold {111}, 3-fold {100}-{111}, 2-fold {111}-{111}, and 2-fold coordination with the O atom in the vertices facilitated more oxygen vacancies and led to improved surface reactivities as well as sensitivity.
Collapse