1
|
Li X, Zhang Q, Xu M, Li X. Modulation of metal nanocatalysts for enhanced selectivity of chemoselective reduction and addition hydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
2
|
Ye R, Huang YY, Chen CC, Yao YG, Fan M, Zhou Z. Emerging catalysts for the ambient synthesis of ethylene glycol from CO 2 and its derivatives. Chem Commun (Camb) 2023; 59:2711-2725. [PMID: 36752126 DOI: 10.1039/d2cc06313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ethylene glycol (EG), a useful chemical raw material, has been widely applied in many aspects of modern society. The conventional preparation of ethylene glycol mainly uses the petroleum route at high temperatures and pressure. More and more approaches have been developed to synthesize EG from CO2 and its derivatives under mild conditions. In this review, the ambient synthesis of EG from thermocatalysis, photocatalysis, and electrocatalysis is highlighted. The coal-to-ethylene glycol technology, one of the typical thermal catalysis routes for EG preparation, is relatively mature. However, it still faces some problems to be solved in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is introduced. The main focus is on how to realize the preparation of EG under mild conditions. The strategies include doping promoters, modification of supports, design of catalysts with special structures, etc. Furthermore, the emerging technological progress of photocatalytic and electrocatalytic ethylene glycol synthesis under ambient conditions is introduced. Compared with the thermal catalytic reaction, the reaction conditions are milder. However, there are still many problems in large-scale production. Finally, we propose future development issues and related prospects for the ambient synthesis of EG using different catalytic routes.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Yuan-Yuan Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Chong-Chong Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. .,College of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Maohong Fan
- College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, Laramie, Wyoming, 82071, USA. .,College of Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| |
Collapse
|
3
|
Cheng S, Meng T, Mao D, Guo X, Yu J. Selective Hydrogenation of Dimethyl Oxalate to Methyl Glycolate over Boron-Modified Ag/SiO 2 Catalysts. ACS OMEGA 2022; 7:41224-41235. [PMID: 36406499 PMCID: PMC9670726 DOI: 10.1021/acsomega.2c04880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The addition of boron (B) as a promoter to the Ag/SiO2 catalyst for the selective hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) was investigated. A comparison of the preparation method for incorporation of B found that the addition during the ammonia evaporation deposition-precipitation synthesis of the Ag/SiO2 catalyst (Ag-B/SiO2) was inferior to incipient wetness impregnation introduction of the Ag/SiO2 catalyst (B/Ag/SiO2). Moreover, the effects of B contents (0.5-5 wt %) on the physicochemical properties and catalytic performance of the B/Ag/SiO2 catalysts were investigated by XRF, N2-physisorption, XRD, FTIR, TEM, EDX mapping, H2-TPR, NH3-TPD, XPS, and catalytic testing. The results indicated that both the catalytic activity and stability of the Ag/SiO2 catalyst were noticeably enhanced after the introduction of B. The B/Ag/SiO2 catalyst with 1 wt % B showed the best catalytic performance of 100% DMO conversion and 88.3% MG selectivity, which could be attributed to the highest dispersion of the active metal and the smallest Ag particle size stabilized by the strong interaction between silver and boron species.
Collapse
|