1
|
Kanzaki Y, Minami R, Ota K, Adachi J, Hori Y, Ohtani R, Le Ouay B, Ohba M. Enhancing Performances of Enzyme/Metal-Organic Polyhedra Composites by Mixed-Protein Co-Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54423-54434. [PMID: 39315760 DOI: 10.1021/acsami.4c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein immobilization using water-soluble ionic metal-organic polyhedra (MOPs) acting as porous spacers has recently been demonstrated as a potent strategy for the preparation of biocatalysts. In this article, we describe a mixed-protein approach to achieve biocomposites with adjustable enzyme contents and excellent immobilization efficiencies, in a systematic and well-controlled manner. Self-assembly of either cationic or anionic MOPs with bovine serum albumin or egg white lysozyme combined with enzymes (alkaline phosphatase, laccase or cytochrome c) led to solid-state catalysts with a high retention of enzyme activity. Furthermore, for all these systems, the dilution of enzymes within the solid-state composite led to noticeably improved catalytic performances, with both higher specific activity and affinity for substrate.
Collapse
Affiliation(s)
- Yuri Kanzaki
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryosuke Minami
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Koshiro Ota
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Junya Adachi
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Tsoukatos S, Maibam A, Babarao R, Bloch WM. Topological control in paddlewheel metal-organic cages via ligand length variation. Chem Commun (Camb) 2024. [PMID: 39354805 DOI: 10.1039/d4cc03769c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Varying the length of phenanthrene-derived ligands switches the selective assembly of MIInLn metal-organic cages (MOCs, n = 6 or 8) between tetrahedral, square, or triangular architectures. The limit of this approach is explored for both Cu2 and Rh2 paddlewheel MOCs, and supported by solution, solid-state and computational analysis.
Collapse
Affiliation(s)
- Steven Tsoukatos
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Ashakiran Maibam
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, 3001 Victoria, Australia
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, 3001 Victoria, Australia
- CSIRO, Clayton 3168, Victoria, Australia
| | - Witold M Bloch
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
3
|
Chen S, Zheng X, Zhu P, Li Y, Zhuang Z, Wu H, Zhu J, Xiao C, Chen M, Wang P, Wang D, He YL. Copper Atom Pairs Stabilize *OCCO Dipole Toward Highly Selective CO 2 Electroreduction to C 2H 4. Angew Chem Int Ed Engl 2024:e202411591. [PMID: 39136330 DOI: 10.1002/anie.202411591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 10/30/2024]
Abstract
Deeply electrolytic reduction of carbon dioxide (CO2) to high-value ethylene (C2H4) is very attractive. However, the sluggish kinetics of C-C coupling seriously results in the low selectivity of CO2 electroreduction to C2H4. Herein, we report a copper-based polyhedron (Cu2) that features uniformly distributed and atomically precise bi-Cu units, which can stabilize *OCCO dipole to facilitate the C-C coupling for high selective C2H4 production. The C2H4 faradaic efficiency (FE) reaches 51 % with a current density of 469.4 mA cm-2, much superior to the Cu single site catalyst (Cu SAC) (~0 %). Moreover, the Cu2 catalyst has a higher turnover frequency (TOF, ~520 h-1) compared to Cu nanoparticles (~9.42 h-1) and Cu SAC (~0.87 h-1). In situ characterizations and theoretical calculations revealed that the unique Cu2 structural configuration could optimize the dipole moments and stabilize the *OCCO adsorbate to promote the generation of C2H4.
Collapse
Affiliation(s)
- Shenghua Chen
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaobo Zheng
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yapeng Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hangjuan Wu
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiexin Zhu
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chunhui Xiao
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 511436, P. R. China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 511436, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ya-Ling He
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Sánchez-Fuente M, Hernández-López L, Maspoch D, Mas-Ballesté R, Carné-Sánchez A. Recyclable Homogeneous Catalysis Enabled by Dynamic Coordination on Rhodium(II) Axial Sites of Metal-Organic Polyhedra. Chemistry 2024; 30:e202401661. [PMID: 38780226 DOI: 10.1002/chem.202401661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The activity of catalytic nanoparticles is strongly dependent on their surface chemistry, which controls colloidal stability and substrate diffusion toward catalytic sites. In this work, we studied how the outer surface chemistry of nanostructured Rh(II)-based metal-organic cages or polyhedra (Rh-MOPs) impacts their performance in homogeneous catalysis. Specifically, through post-synthetic coordination of aliphatic imidazole ligands onto the exohedral Rh(II) axial sites of Rh-MOPs, we solubilized a cuboctahedral Rh-MOP in dichloromethane, thereby enabling its use as a homogeneous catalyst. We demonstrated that the presence of the coordinating ligand on the surface of the Rh-MOP does not hinder its catalytic activity in styrene aziridination and cyclopropanation reactions, thanks to the dynamic Rh-imidazole coordination bond. Finally, we used similar ligand exchange post-synthetic reactions to develop a ligand-mediated approach for precipitating the Rh-MOP catalyst, facilitating the recovery and reuse of Rh-MOPs as homogeneous catalysts.
Collapse
Affiliation(s)
- Miguel Sánchez-Fuente
- Department of Inorganic Chemistry (Module 7), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Laura Hernández-López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Rubén Mas-Ballesté
- Department of Inorganic Chemistry (Module 7), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
5
|
O'Nolan D, Sitaula P, Bellamy T, Chatterton L, Amato K, Todd Ennis J, Harrison S, Soukri M, Blough B. Coalescence of Porous Coordination Cages into Crystalline and Amorphous Bulk Solids. Inorg Chem 2024; 63:11700-11707. [PMID: 38863221 DOI: 10.1021/acs.inorgchem.4c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Discrete porous coordination cages are attractive as a solution processable material whose porosity is not predicated on a network structure. Here, we leverage the peripheral functionalization of these cage structures to obtain 12 novel, solution processable, porous coordination cages that afford crystalline and amorphous single-phase millimeter-scale monolithic bulk structures (six of each) upon solidification. These structures are based upon prototypal metal-organic polyhedra [Cu24(5-x-isophthalate)24] (where x = NH2, OH), wherein meta-substitution of linker ligands with acyl chloride or isocyanate moieties afforded amide and urethane functional groups, respectively. These porous cage structures were obtainable via direct synthesis between a metal salt and a ligand as well as postsynthetic modification of the cage and formed monoliths following centrifugation and drying of the product. We rationalize their self-assembly as colloidal packing of nanoscale cuboctahedral cages through weak interactions between their hydrophobic alkyl/aromatic surfaces. In general, amorphous solids were obtained via rapid precipitation from the mother liquor upon methanol addition, while crystalline solids could be obtained only following further chloroform and pyridine additions. The structure of the materials is confirmed via gas sorption and spectroscopic methods, while powder X-ray diffraction and transmission electron microscopy are used to determine the nature of these bulk solids.
Collapse
Affiliation(s)
- Daniel O'Nolan
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Paban Sitaula
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Timothy Bellamy
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Lindsey Chatterton
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Kelly Amato
- Discovery Sciences, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - J Todd Ennis
- Discovery Sciences, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Sara Harrison
- Discovery Sciences, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Mustapha Soukri
- Technology Advancement and Commercialization, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| | - Bruce Blough
- Discovery Sciences, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
6
|
Cortés-Martínez A, von Baeckmann C, Hernández-López L, Carné-Sánchez A, Maspoch D. Giant oligomeric porous cage-based molecules. Chem Sci 2024; 15:7992-7998. [PMID: 38817590 PMCID: PMC11134396 DOI: 10.1039/d4sc01974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Most reported porous materials are either extended networks or monomeric discrete cavities; indeed, porous structures of intermediate size have scarcely been explored. Herein, we present the stepwise linkage of discrete porous metal-organic cages or polyhedra (MOPs) into oligomeric structures with a finite number of MOP units. The synthesis of these new oligomeric porous molecules entails the preparation of 1-connected (1-c) MOPs with only one available azide reactive site on their surface. The azide-terminated 1-c MOP is linked through copper(i)-catalysed azide-alkyne cycloaddition click chemistry with additional alkyne-terminated 1-c MOPs, 4-c clusters, or 24-c MOPs to yield three classes of giant oligomeric molecules: dimeric, tetrameric, or satellite-like, respectively. Importantly, all the giant molecules that we synthesised are soluble in water and permanently porous in the solid state.
Collapse
Affiliation(s)
- Alba Cortés-Martínez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Cornelia von Baeckmann
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Laura Hernández-López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
7
|
Tateishi T, Troyano J, Tokuda S, Craig GA, Krause S, López-Olvera A, Ibarra IA, Furukawa S. Statistical Distribution of Binary Ligands within Rhodium-Organic Octahedra Tunes Microporosity in Their Assemblies. Inorg Chem 2024; 63:6571-6575. [PMID: 38572833 DOI: 10.1021/acs.inorgchem.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Structure-porosity relationships for metal-organic polyhedra (MOPs) are hardly investigated because they tend to be amorphized after activation, which inhibits crystallographic characterization. Here, we show a mixed-ligand strategy to statistically distribute two distinct carbazole-type ligands within rhodium-based octahedral MOPs, leading to systematic tuning of the microporosity in the resulting amorphous solids.
Collapse
Affiliation(s)
- Tomoki Tateishi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Shun Tokuda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Gavin A Craig
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Simon Krause
- Nanochemistry department, Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510 México D.F., Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510 México D.F., Mexico
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Tayier F, Troyano J, Tokuda S, Wang Z, Haga MA, Furukawa S. Redox-Active Ruthenium-Organic Polyhedra with Tunable Surface Functionality and Porosities. Inorg Chem 2024; 63:5559-5567. [PMID: 38470047 DOI: 10.1021/acs.inorgchem.3c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Dinuclear ruthenium paddlewheel complexes exhibit high structural stability in redox reactions. The use of these chemical motifs for the construction of Ru-based metal-organic polyhedra (RuMOPs) provides a route for redox-active porous materials. However, there are few studies on the synthesis and characterization of RuMOPs due to the difficulty in controlling the assembly process via the ligand-exchange reaction of equatorial acetates of the diruthenium tetraacetate precursors with dicarboxylic acid ligands. In this study, we synthesized three novel cuboctahedral RuMOPs based on the Ru2(II/III)-paddlewheel units with different alkyl functionalizations on the benzene-1,3-dicarboxylate moieties. We evaluated the effect of external functionalization on the molecular packing and the porous and redox properties. The electrochemical measurements revealed the multielectron transferred redox process where the electron-donating/-withdrawing nature of the functional groups allows the control of the redox behavior.
Collapse
Affiliation(s)
- Fuerkaiti Tayier
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Shun Tokuda
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masa-Aki Haga
- Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Baeckmann C, Martínez-Esaín J, Suárez del Pino JA, Meng L, Garcia-Masferrer J, Faraudo J, Sort J, Carné-Sánchez A, Maspoch D. Porous and Meltable Metal-Organic Polyhedra for the Generation and Shaping of Porous Mixed-Matrix Composites. J Am Chem Soc 2024; 146:7159-7164. [PMID: 38467030 PMCID: PMC10958503 DOI: 10.1021/jacs.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Here, we report the synthesis of BCN-93, a meltable, functionalized, and permanently porous metal-organic polyhedron (MOP) and its subsequent transformation into amorphous or crystalline, shaped, self-standing, transparent porous films via melting and subsequent cooling. The synthesis entails the outer functionalization of a MOP with meltable polymer chains: in our model case, we functionalized a Rh(II)-based cuboctahedral MOP with poly(ethylene glycol). Finally, we demonstrate that once melted, BCN-93 can serve as a porous matrix into which other materials or molecules can be dispersed to form mixed-matrix composites. To illustrate this, we combined BCN-93 with one of various additives (either two MOF crystals, a porous cage, or a linear polymer) to generate a series of mixed-matrix films, each of which exhibited greater CO2 uptake relative to the parent film.
Collapse
Affiliation(s)
- Cornelia
von Baeckmann
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The
Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Martínez-Esaín
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The
Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain
| | - José A. Suárez del Pino
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The
Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lingxin Meng
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The
Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Jordi Faraudo
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Jordi Sort
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Arnau Carné-Sánchez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The
Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The
Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Doñagueda Suso B, Wang Z, Kennedy AR, Fletcher AJ, Furukawa S, Craig GA. Improving the gas sorption capacity in lantern-type metal-organic polyhedra by a scrambled cage method. Chem Sci 2024; 15:2857-2866. [PMID: 38404369 PMCID: PMC10882442 DOI: 10.1039/d3sc06140j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
The synthesis of multivariate metal-organic frameworks (MOFs) is a well-known method for increasing the complexity of porous frameworks. In these materials, the structural differences of the ligands used in the synthesis are sufficiently subtle that they can each occupy the same site in the framework. However, multivariate or ligand scrambling approaches are rarely used in the synthesis of porous metal-organic polyhedra (MOPs) - the molecular equivalent of MOFs - despite the potential to retain a unique intrinsic pore from the individual cage while varying the extrinsic porosity of the material. Herein we directly synthesise scrambled cages across two families of lantern-type MOPs and find contrasting effects on their gas sorption properties. In one family, the scrambling approach sees a gradual increase in the BET surface area with the maximum and minimum uptakes associated with the two pure homoleptic cages. In the other, the scrambled materials display improved surface areas with respect to both of the original, homoleptic cages. Through analysis of the gas sorption isotherms, we attribute this effect to the balance of micro- and mesoporosity within the materials, which varies as a result of the scrambling approach. The gas uptake of the materials presented here underscores the tunability of cages that springs from their combination of intrinsic, extrinsic, micro- and meso-porosities.
Collapse
Affiliation(s)
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Ashleigh J Fletcher
- Department of Chemical and Process Engineering, University of Strathclyde Glasgow G1 1XJ UK
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Gavin A Craig
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| |
Collapse
|
11
|
Le Ouay B, Ohara T, Minami R, Kunitomo R, Ohtani R, Ohba M. Efficient water-based purification of metal-organic polyhedra by centrifugal ultrafiltration. Dalton Trans 2023; 52:15321-15325. [PMID: 37341496 DOI: 10.1039/d3dt01644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
An efficient water-based purification strategy for metal-organic polyhedra (MOPs) using commercially available centrifugal ultrafiltration membranes was developed. Having a diameter above 3 nm, MOPs were almost fully retained by the filters, while free ligands and other impurities were washed away. MOP retention also enabled efficient counter-ion exchange. This method paves the way for the application of MOPs with biological systems.
Collapse
Affiliation(s)
- Benjamin Le Ouay
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tomo Ohara
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ryosuke Minami
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rin Kunitomo
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ryo Ohtani
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masaaki Ohba
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
12
|
Hernández-López L, von Baeckmann C, Martínez-Esaín J, Cortés-Martínez A, Faraudo J, Caules C, Parella T, Maspoch D, Carné-Sánchez A. (Bio)Functionalisation of Metal-Organic Polyhedra by Using Click Chemistry. Chemistry 2023; 29:e202301945. [PMID: 37523177 DOI: 10.1002/chem.202301945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/01/2023]
Abstract
The surface chemistry of Metal-Organic Polyhedra (MOPs) is crucial to their physicochemical properties because it governs how they interact with external substances such as solvents, synthetic organic molecules, metal ions, and even biomolecules. Consequently, the advancement of synthetic methods that facilitate the incorporation of diverse functional groups onto MOP surfaces will significantly broaden the range of properties and potential applications for MOPs. This study describes the use of copper(I)-catalysed, azide-alkyne cycloaddition (CuAAC) click reactions to post-synthetically modify the surface of alkyne-functionalised cuboctahedral MOPs. To this end, a novel Rh(II)-based MOP with 24 available surface alkyne groups was synthesised. Each of the 24 alkyne groups on the surface of the "clickable" Rh-MOP can react with azide-containing molecules at room temperature, without compromising the integrity of the MOP. The wide substrate catalogue and orthogonal nature of CuAAC click chemistry was exploited to densely functionalise MOPs with diverse functional groups, including polymers, carboxylic and phosphonic acids, and even biotin moieties, which retained their recognition capabilities once anchored onto the surface of the MOP.
Collapse
Affiliation(s)
- Laura Hernández-López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| | - Cornelia von Baeckmann
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| | - Jordi Martínez-Esaín
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Alba Cortés-Martínez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193, Bellaterra, Spain
| | - Caterina Caules
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Departament de Química, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
13
|
Troyano J, Tayier F, Phattharaphuti P, Aoyama T, Urayama K, Furukawa S. Porous supramolecular gels produced by reversible self-gelation of ruthenium-based metal-organic polyhedra. Chem Sci 2023; 14:9543-9552. [PMID: 37712036 PMCID: PMC10498683 DOI: 10.1039/d3sc02888g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
Supramolecular gels based on metal-organic polyhedra (MOPs) represent a versatile platform to access processable soft materials with controlled porosity. Herein, we report a self-gelation approach that allows the reversible assembly of a novel Ru-based MOP in the form of colloidal gels. The presence of cationic mixed-valence [Ru2(COO)4]+ paddlewheel units allows for modification of the MOP charge via acid/base treatment, and therefore, its solubility. This feature enables control over supramolecular interactions, making it possible to reversibly force MOP aggregation to form nanoparticles, which further assemble to form a colloidal gel network. The gelation process was thoroughly investigated by time-resolved ζ-potential, pH, and dynamic light scattering measurements. This strategy leads to the evolution of hierarchically porous aerogel from individual MOP molecules without using any additional component. Furthermore, we demonstrate that the simplicity of this method can be exploited for the obtention of MOP-based gels through a one-pot synthetic approach starting from MOP precursors.
Collapse
Affiliation(s)
- Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku 606-8501 Kyoto Japan
- Department of Inorganic Chemistry, Autonomous University of Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid 28049 Madrid Spain
| | - Fuerkaiti Tayier
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku 606-8501 Kyoto Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Phitchayapha Phattharaphuti
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku 606-8501 Kyoto Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku 606-8501 Kyoto Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
14
|
Calvo-Lozano O, Hernández-López L, Gomez L, Carné-Sánchez A, von Baeckmann C, Lechuga LM, Maspoch D. Integration of Metal-Organic Polyhedra onto a Nanophotonic Sensor for Real-Time Detection of Nitrogenous Organic Pollutants in Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39523-39529. [PMID: 37566722 PMCID: PMC10450679 DOI: 10.1021/acsami.3c07213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The grave health and environmental consequences of water pollution demand new tools, including new sensing technologies, for the immediate detection of contaminants in situ. Herein, we report the integration of metal-organic cages or polyhedra (MOCs/MOPs) within a nanophotonic sensor for the rapid, direct, and real-time detection of small (<500 Da) pollutant molecules in water. The sensor, a bimodal waveguide silicon interferometer incorporating Rh(II)-based MOPs as specific chemical receptors, does not require sample pretreatment and enables minimal expenditure of time and reagents. We validated our sensor for the detection of two common pollutants: the industrial corrosion inhibitor 1,2,3-benzotriazole (BTA) and the systemic insecticide imidacloprid (IMD). The sensor offers a fast time-to-result response (15 min), high sensitivity, and high accuracy. The limit of detection (LOD) in tap water for BTA is 0.068 μg/mL and for IMD, 0.107 μg/mL, both of which are below the corresponding toxicity thresholds defined by the European Chemicals Agency (ECHA). By combining innovative chemical molecular receptors such as MOPs with state-of-the-art photonic sensing technologies, our research opens the path to implement competitive sensor devices for in situ environmental monitoring.
Collapse
Affiliation(s)
- Olalla Calvo-Lozano
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BNN,
and Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Hernández-López
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Leyre Gomez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Arnau Carné-Sánchez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cornelia von Baeckmann
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laura M. Lechuga
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BNN,
and Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
15
|
Le Ouay B, Minami R, Boruah PK, Kunitomo R, Ohtsubo Y, Torikai K, Ohtani R, Sicard C, Ohba M. Water-Soluble Ionic Metal-Organic Polyhedra as a Versatile Platform for Enzyme Bio-immobilization. J Am Chem Soc 2023. [PMID: 37192338 DOI: 10.1021/jacs.2c13798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metal-organic polyhedra (MOPs) can act as elementary structural units for the design of modular porous materials; however, their association with biological systems remains greatly restricted by their typically low stabilities and solubilities in water. Herein, we describe the preparation of novel MOPs bearing either anionic or cationic groups and exhibiting a high affinity for proteins. Simple mixing of the protein bovine serum albumin (BSA) and ionic MOP aqueous solutions resulted in the spontaneous formation of MOP-protein assemblies, in a colloidal state or as solid precipitates depending on the initial mixing ratio. The versatility of the method was further illustrated using two enzymes, catalase and cytochrome c, with different sizes and isoelectric points (pI's) below and above 7. This mode of assembly led to the high retention of catalytic activity and enabled recyclability. Furthermore, the co-immobilization of cytochrome c with highly charged MOPs resulted in a substantial 44-fold increase of its catalytic activity.
Collapse
Affiliation(s)
- Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryosuke Minami
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Purna K Boruah
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rin Kunitomo
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Ohtsubo
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Torikai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Faculty of Chemistry, National University of Uzbekistan Named after Mirzo Ulugbek, 4 University Street, Tashkent 100174, Uzbekistan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Clémence Sicard
- Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des États-Unis, Bâtiment Lavoisier, Versailles 78035, France
- Institut Universitaire de France (IUF), 103 Boulevard St Michel, Paris 75005, France
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Metallic–Organic Cages (MOCs) with Heterometallic Character: Flexibility-Enhancing MOFs. Catalysts 2023. [DOI: 10.3390/catal13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The dichotomy between metal–organic frameworks (MOFs) and metal–organic cages (MOCs) opens up the research spectrum of two fields which, despite having similarities, both have their advantages and disadvantages. Due to the fact that they have cavities inside, they also have applicability in the porosity sector. Bloch and coworkers within this evolution from MOFs to MOCs manage to describe a MOC with a structure of Cu2 paddlewheel Cu4L4 (L = bis(pyrazolyl)methane) with high precision thanks to crystallographic analyses of X-ray diffraction and also SEM-EDX. Then, also at the same level of concreteness, they were able to find the self-assembly of Pd(II)Cl2 moieties on the available nitrogen donor atoms leading to a [Cu4(L(PdCl2))4] structure. Here, calculations of the DFT density functional allow us to reach an unusual precision given the magnitude and structural complexity, explaining how a pyrazole ring of each bis(pyprazolyl)methane ligand must rotate from an anti to a syn conformation, and a truncation of the MOC structure allows us to elucidate, in the absence of the MOC constraint and its packing in the crystal, that the rotation is almost barrierless, as well as also explain the relative stability of the different conformations, with the anti being the most stable conformation. Characterization calculations with Mayer bond orders (MBO) and noncovalent interaction (NCI) plots discern what is important in the interaction of this type of cage with PdCl2 moieties, also CuCl2 by analogy, as well as simple molecules of water, since the complex is stable in this solvent. However, the L ligand is proved to not have the ability to stabilize an H2O molecule.
Collapse
|
17
|
Troyano J, Horike S, Furukawa S. Reversible Discrete-to-Extended Metal-Organic Polyhedra Transformation by Sulfonic Acid Surface Functionalization. J Am Chem Soc 2022; 144:19475-19484. [PMID: 36222467 DOI: 10.1021/jacs.2c07978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic polyhedra (MOPs) are molecular porous units in which desired functionalities can be installed with precise geometrical and compositional control. By combing two complementary chemical moieties, such as sulfonic acid groups and Rh(II)-carboxylate paddlewheel, we synthesized a robust water-soluble cuboctahedral MOP with excellent features in both solution and solid states. Herein, we demonstrate that the superior chemical stability of the Rh2 unit and the elevated number of functional groups on the surface (24 per cage) result in a porous cage with high solubility and stability in water, including acidic, neutral, and basic pH conditions. We also prove that the sulfonic acid-rich form of the cage can be isolated through postsynthetic acid treatment. This transformation involves an improved gas uptake capacity and the capability to reversibly assemble the cages into a three-dimensional (3D) metal-organic framework (MOF) structure. Likewise, this sulfonic acid functionalization provides both MOP and MOF solids with high proton conductivities (>10-3 S cm-1), comparable to previously reported high conducting metal-organic materials. The influence of the MOP-to-MOF processing in the gas adsorption capacity indicates that this structural transformation can provide materials with higher and more controllable porous properties. These results illustrate the high potential of acidic MOPs as more flexible porous building units in terms of processability, structural complexity, and tunability of the properties.
Collapse
Affiliation(s)
- Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, iCeMS Research Building, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.,Inorganic Chemistry Department, Autonomous University of Madrid, Madrid 28049, Spain
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, iCeMS Research Building, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, iCeMS Research Building, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
18
|
|
19
|
Yong MT, Linder-Patton OM, Bloch WM. Assembly of a Heterometallic Cu(II)-Pd(II) Cage by Post-assembly Metal Insertion. Inorg Chem 2022; 61:12863-12869. [PMID: 35920858 DOI: 10.1021/acs.inorgchem.2c02046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous structures based on multi-metallic motifs are receiving growing interest, but their general preparation still remains a challenge. Here, we report the self-assembly and structure of a CuII metal-organic cage (MOC) that is functionalized with free bis(pyrazolyl)methane sites. The homometallic Cu4L4 cage is isolated as a water-stable crystalline solid, and its formation is dependent on metal-ligand stoichiometry and the pre-organization of the Cu2 paddlewheel. We show by X-ray diffraction and SEM-EDX that PdII chloride can be quantitatively inserted into the free chelating sites of the MOC to yield a [Cu4(L(PdCl2))4] structure. Moreover, the solvent employed in the metalation dictates the solid-state isomerism of the heterometallic cage─a further handle to control the MOC's structural diversity and permanent porosity.
Collapse
Affiliation(s)
- Mei Tieng Yong
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Oliver M Linder-Patton
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Witold M Bloch
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia.,Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
20
|
Delgado P, Martin-Romera JD, Perona C, Vismara R, Galli S, Maldonado CR, Carmona FJ, Padial NM, Navarro JAR. Zirconium Metal-Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26501-26506. [PMID: 35653699 PMCID: PMC9204697 DOI: 10.1021/acsami.2c06025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate nerve agents and pesticides are extremely toxic compounds because they result in acetylcholinesterase (AChE) inhibition and concomitant nerve system damage. Herein, we report the synthesis, structural characterization, and proof-of-concept utility of zirconium metal-organic polyhedra (Zr-MOPs) for organophosphate poisoning treatment. The results show the formation of robust tetrahedral cages [((n-butylCpZr)3(OH)3O)4L6]Cl6 (Zr-MOP-1; L = benzene-1,4-dicarboxylate, n-butylCp = n-butylcyclopentadienyl, Zr-MOP-10, and L = 4,4'-biphenyldicarboxylate) decorated with lipophilic alkyl residues and possessing accessible cavities of ∼9.8 and ∼10.7 Å inner diameters, respectively. These systems are able to both capture the organophosphate model compound diisopropylfluorophosphate (DIFP) and host and release the AChE reactivator drug pralidoxime (2-PAM). The resulting 2-PAM@Zr-MOP-1(0) host-guest assemblies feature a sustained delivery of 2-PAM under simulated biological conditions, with a concomitant reactivation of DIFP-inhibited AChE. Finally, 2-PAM@Zr-MOP systems have been incorporated into biocompatible phosphatidylcholine liposomes with the resulting assemblies being non-neurotoxic, as proven using neuroblastoma cell viability assays.
Collapse
Affiliation(s)
- Pedro Delgado
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Javier D. Martin-Romera
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Cristina Perona
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Rebecca Vismara
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell‘Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Simona Galli
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell‘Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Carmen R. Maldonado
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Francisco J. Carmona
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Natalia M. Padial
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 València, Spain
| | - Jorge A. R. Navarro
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
21
|
Sánchez-González E, Tsang MY, Troyano J, Craig GA, Furukawa S. Assembling metal-organic cages as porous materials. Chem Soc Rev 2022; 51:4876-4889. [PMID: 35441616 DOI: 10.1039/d1cs00759a] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing interest in metal-organic cages (MOCs) as porous materials owing to their processability in solution. The discrete molecular character and surface features of MOCs have a direct impact on the interactions between cages, enabling the final physical state of the materials to be tuned. In this tutorial review, we discuss how to use MOCs as core building units, highlighting the role played by surface functionalisation of MOCs in leading to porous materials in a range of states covering crystalline solids, soft matter, liquids and composites. We finish by providing an outlook on the opportunities for this work to serve as a foundation for the development of increasingly complex functional porous materials structured over various length scales.
Collapse
Affiliation(s)
- Elí Sánchez-González
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, Ciudad de México 04510, Mexico
| | - Min Ying Tsang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, 50-373, Poland
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Gavin A Craig
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
Schneider ML, Campbell JA, Slattery AD, Bloch WM. Polymer networks of imine-crosslinked metal–organic cages: tuneable viscoelasticity and iodine adsorption. Chem Commun (Camb) 2022; 58:12122-12125. [DOI: 10.1039/d2cc04969d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solution-state structure of MOP-15 is elucidated, enabling its direct use as a porous monomer for covalent polymer networks.
Collapse
Affiliation(s)
| | - Jonathan A. Campbell
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5035, Australia
| | - Ashley D. Slattery
- Adelaide Microscopy, The University of Adelaide, Adelaide, 5005, Australia
| | - Witold M. Bloch
- Department of Chemistry, The University of Adelaide, Adelaide, Australia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5035, Australia
| |
Collapse
|