1
|
Suzuki Y, Koga S, Kitaura K, Kawamata J, Yano K, Hoshino N, Akutagawa T, Hayashi S. Noninvasive Three-dimensional Assessment of Single Molecular Crystals Using Multiphoton Microscopic Observation and Their Deformation-induced Emission Characteristics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11646-11652. [PMID: 37556485 DOI: 10.1021/acs.langmuir.3c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Distinguishing the luminescence contribution from the surface and bulk of a crystal is a long-standing challenge in crystal materials. Herein, three-dimensional, multiphoton, luminescence microscope imaging of the elastic molecular single crystal 1,4-bis(4-methylthien-2-yl)-2,3,5,6-tetrafluorobenzene, was conducted. Further, the luminescence contribution from the surface and bulk of the crystal was experimentally distinguished. Strong luminescence was observed only from the surface of the crystal, while the bulk did not emit strongly. Furthermore, the surface and bulk luminescence behavior responded well to the mechanical shape change of the crystal; i.e., strong luminescence was observed for the elongated side of the crystal.
Collapse
Affiliation(s)
- Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512, Japan
| | - Satoshi Koga
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512, Japan
| | - Kana Kitaura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512, Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512, Japan
| | - Keigo Yano
- School of Engineering Science, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi 782-8502, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8579, Japan
| | - Shotaro Hayashi
- School of Engineering Science, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi 782-8502, Japan
| |
Collapse
|
2
|
Mechanically flexible crystals of styryl quinoline derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Tsai C, Cheng C, Ho Y, Hsu Y, Liu Y, Peng S, Yang J. Pseudopolymorphism of a luminescent anthracene‐pentiptycene π‐system: The persistent alkyl‐pentiptycene threading mode. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chia‐Ying Tsai
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Chiao‐Min Cheng
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Yu‐Chieh Ho
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Ying‐Feng Hsu
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Yi‐Hung Liu
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Shie‐Ming Peng
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Jye‐Shane Yang
- Department of Chemistry National Taiwan University Taipei Taiwan
| |
Collapse
|
4
|
Gayathri P, Ravi S, Karthikeyan S, Pannippara M, Al-Sehemi AG, Moon D, Anthony SP. Pyridine Nitrogen Position Controlled Molecular Packing and Stimuli-responsive Solid-State Fluorescence Switching: Supramolecular Complexation Facilitated Turn-on Fluorescence. CrystEngComm 2022. [DOI: 10.1039/d1ce01688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophore structure and supramolecular interactions plays important role on the molecular conformation and packing in the solid state that strongly influenced on the solid-state fluorescence properties. Herein, we report the...
Collapse
|
5
|
Peng J, Bai J, Cao X, He J, Xu W, Jia J. Elastic Organic Crystals Based on Barbituric Derivative: Multi-faceted Bending and Flexible Optical Waveguide. Chemistry 2021; 27:16036-16042. [PMID: 34559422 DOI: 10.1002/chem.202103286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Elastic organic single crystals with light-emitting and multi-faceted bending properties are extremely rare. They have potential application in optical materials and have attracted the extensive attention of researchers. In this paper, we reported a structurally simple barbituric derivative DBDT, which was easily crystallized and gained long needle-like crystals (centimeter-scale) in DCM/CH3 OH (v/v=2/8). Upon applying or removing the mechanical force, both the (100) and (040) faces of the needle-like crystal showed reversible bending behaviour, showing the nature of multi-faceted bending. The average hardness (H) and elastic modulus (E) were 0.28±0.01 GPa and 4.56±0.03 GPa for the (040) plane, respectively. Through the analysis of the single crystal data, it could be seen that the van der waals (C-H⋅⋅⋅π and C-H⋅⋅⋅C), H-bond (C-H⋅⋅⋅O) and π⋅⋅⋅π interactions between molecules were responsible for the generation of the crystal elasticity. Interestingly, elastic crystals exhibited optical waveguide characteristics in straight or bent state. The optical loss coefficients measured at 627 nm were 0.7 dBmm-1 (straight state) and 0.9 dBmm-1 (bent state), while the optical loss coefficient (α) were 1.5 dBmm-1 (straight state) and 1.8 dBmm-1 (bent state) at 567 nm. Notably, the elastic organic molecular crystal based on barbituric derivative could be used as the candidate for flexible optical devices.
Collapse
Affiliation(s)
- Jiang Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China
| | - Jiakun Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China
| | - Xiumian Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Physics, Jilin University, Changchun, China
| | - Jieting He
- Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Junhui Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China
| |
Collapse
|
6
|
Seki T, Hoshino N, Suzuki Y, Hayashi S. Functional flexible molecular crystals: intrinsic and mechanoresponsive properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00388g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flexible molecular crystals have attracted much attention to unique optoelectronic applications and stimuli-responsive chemistry, resulting in various functional molecular crystals for controlling photons, phonons, electrons, and magnons.
Collapse
Affiliation(s)
- Tomohiro Seki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8512, Japan
| | - Shotaro Hayashi
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Japan
| |
Collapse
|