1
|
Wei Y, Chen K, Zhu S, Wu W, Zhao H, Huang X, Wang N, Zhou L, Wang T, Wang J, Hao H. Photoactuators Based on Plastically Flexible α-Cyanostilbene Molecular Crystals Driven by the Solid-State [2+2] Cycloaddition Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307756. [PMID: 37987091 DOI: 10.1002/smll.202307756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Organic photomechanical molecular crystals are promising candidates for photoactuators, which have potential applications as smart materials in various fields. However, it is still challenging to fabricate photomechanical molecular crystals with flexibility because most of the molecular crystals are brittle and the mechanism of flexible crystals remains controversial. Here, a plastically flexible α-cyanostilbene crystal has been synthesized that can undergo solid-state [2+2] cycloaddition reaction under violet or UV irradiation and exhibits excellent photomechanical bending properties. A hook-shaped crystal can lift 0.7 mg object upward by 1.5 cm, which proves its potential for application as photoactuators. When complex with the agarose polymer, the molecules will be in the form of macroscopic crystals, which can drive the composite films to exhibit excellent photomechanical bending performance. Upon irradiation with UV light, the composite film can quickly lift 18.0 mg object upward by 0.3 cm. The results of this work may facilitate the application of macroscale crystals as photoactuators.
Collapse
Affiliation(s)
- Yiwei Wei
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Kui Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shanshan Zhu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbo Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongtu Zhao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xin Huang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Na Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lina Zhou
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ting Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jingkang Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongxun Hao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Giri P, Panda A, Panda MK. Photoinduced Puffing with Large Volume Expansion and Photomechanical Motions induced by Topochemical [4+4] Reactions in Molecular Crystal Solvates. Chemistry 2024; 30:e202303836. [PMID: 38198243 DOI: 10.1002/chem.202303836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
In this work, we report the first example of two crystal solvates of an anthracene-benzhydrazide based molecule (Ant) that display very distinct photo-responsive behaviour when 365 or 405 nm or visible light is illuminated. For the first time, the crystal hydrate that has water molecule in the lattice (hereafter named as Ant-H2O) display fascinating puffing behavior with large volume expansion upto 50 % accompanied with surface modulation when illuminated with 405 nm light, a phenomenon very much similar to the rice or popcorn puffing by thermal treatment. Utilizing the properties of photoconverted Ant-H2O crystals, we have demonstrated their application in photoinduced enhanced liquid absorption using various liquids/solutions. The other crystal solvate having DMF in the crystal lattice (hereafter named as Ant-DMF) responds to 405 nm light by bending, twisting, chopping, jumping or splitting etc. The chopping of Ant-DMF crystal was also observed under ambient/white light but at a slower rate compared to 405 nm light. Single crystal X-ray diffraction study reveals that the photoinduced puffing and photomechanical effects of these materials are rooted to the topochemical [4+4] cycloaddition reaction between the anthracene moieties that facilitate molecular packing change assisted by the reconfiguration of intermolecular non-covalent interactions involving lattice trapped solvent molecules.
Collapse
Affiliation(s)
- Prasenjit Giri
- Department of Chemistry, Jadavpur University, Kolkata, 700032
| | - Atanu Panda
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Ibaraki, Japan
- Current affiliation: Amity University, Amity Institute of Applied Science, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Manas K Panda
- Department of Chemistry, Jadavpur University, Kolkata, 700032
| |
Collapse
|
3
|
Yue Y, Shu Y, Ye K, Sun J, Liu C, Dai S, Jin L, Ding C, Lu R. Molecular Twisting Affects the Solid-State Photochemical Reactions of Unsaturated Ketones and the Photomechanical Effects of Molecular Crystals. Chemistry 2023; 29:e202203178. [PMID: 36344439 DOI: 10.1002/chem.202203178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Three groups of chalcone derivatives and their analogues involving halogen atoms (X=F, Cl, Br) have been synthesized. Firstly, the nearly planar acyclic chalcone derivatives were inclined to undergo photo-induced stereospecific [2+2] cycloaddition, which triggered the crystals to exhibit macroscopic motions of bending or cracking. In particular, the single-crystal-to-single-crystal transformation happened upon UV irradiation of the crystals, which was helpful for the understanding photomechanical effects. Cyclic 3,4-dihydronaphthalene-based chalcone analogues possess a more twisted conformation, and they tend to undergo trans-cis isomerization. No photomechanical effect was observed for the crystals of the cyclic chalcone analogues due to the lower isomerization rate. The twist degree of chroman-based molecules was in between of the first two, [2+2] cycloaddition and trans-cis isomerization simultaneously took place in crystals. Photo-induced bending and twisting were observed for the crystals of chroman-based chalcone analogues. Therefore, the differences in molecular dihedral angles in α,β-unsaturated ketones were responsible for their photochemical characters and in turn to tune the photomechanical effects. In this work, a bridge between the molecular structures and solid-state photochemical reactions triggered photomechanical crystals is built.
Collapse
Affiliation(s)
- Yuan Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Yuanhong Shu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Cheng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Shuting Dai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Liuyang Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Chengde Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
4
|
Ye Y, Hao H, Xie C. Photomechanical crystalline materials: new developments, property tuning and applications. CrystEngComm 2022. [DOI: 10.1039/d2ce00203e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This highlight gives an overview of the mechanism development, property tuning and application exploration of photomechanical crystalline materials.
Collapse
Affiliation(s)
- Yang Ye
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Hongxun Hao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- National Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, China
| | - Chuang Xie
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- National Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, China
| |
Collapse
|