1
|
Oyedotun KO, Makgopa K, Nkambule TT, Mathe MK, Otun KO, Mamba BB. Nanostructured Carbon Fibres (NCF): Fabrication and Application in Supercapacitor Electrode. Polymers (Basel) 2024; 16:1859. [PMID: 39000714 PMCID: PMC11244065 DOI: 10.3390/polym16131859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
A facile interconnected nanofibre electrode material derived from polybenzimidazol (PBI) was fabricated for a supercapacitor using a centrifugal spinning technique. The PBI solution in a mixture of dimethyl acetamide (DMA) and N, N-dimethylformamide (DMF) was electrospun to an interconnection of fine nanofibres. The as-prepared material was characterised by using various techniques, which include scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) among others. The specific surface area of the interconnected NCF material was noticed to be around 49 m2 g-1. Electrochemical properties of the material prepared as a single-electrode are methodically studied by adopting cyclic voltammetry, electrochemical impedance spectroscopy, and constant-current charge-discharge techniques. A maximum specific capacitance of 78.4 F g-1 was observed for the electrode at a specific current of 0.5 A g-1 in a 2.5 M KNO3 solution. The electrode could also retain 96.7% of its initial capacitance after a 5000 charge-discharge cycles at 5 A g-1. The observed capacitance and good cycling stability of the electrode are supported by its specific surface area, pore volume, and conductivity. The results obtained for this material indicate its potential as suitable candidate electrode for supercapacitor application.
Collapse
Affiliation(s)
- Kabir O Oyedotun
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Arcadia Campus, Pretoria 0001, South Africa
| | - Thabo T Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Mkhulu K Mathe
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Kabir O Otun
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Bhekie B Mamba
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| |
Collapse
|
2
|
Lu J, Jiang H, Guo P, Li J, Zhu H, Fan X, Huang L, Sun J, Wang Y. Application of Copper-Sulfur Compound Electrode Materials in Supercapacitors. Molecules 2024; 29:977. [PMID: 38474488 DOI: 10.3390/molecules29050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Supercapacitors (SCs) are a novel type of energy storage device that exhibit features such as a short charging time, a long service life, excellent temperature characteristics, energy saving, and environmental protection. The capacitance of SCs depends on the electrode materials. Currently, carbon-based materials, transition metal oxides/hydroxides, and conductive polymers are widely used as electrode materials. However, the low specific capacitance of carbon-based materials, high cost of transition metal oxides/hydroxides, and poor cycling performance of conductive polymers as electrodes limit their applications. Copper-sulfur compounds used as electrode materials exhibit excellent electrical conductivity, a wide voltage range, high specific capacitance, diverse structures, and abundant copper reserves, and have been widely studied in catalysis, sensors, supercapacitors, solar cells, and other fields. This review summarizes the application of copper-sulfur compounds in SCs, details the research directions and development strategies of copper-sulfur compounds in SCs, and analyses and summarizes the research hotspots and outlook, so as to provide a reference and guidance for the use of copper-sulfur compounds.
Collapse
Affiliation(s)
- Junhua Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Hedong Jiang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Pingchun Guo
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Jiake Li
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Hua Zhu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Xueyun Fan
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Liqun Huang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Jian Sun
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Yanxiang Wang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| |
Collapse
|
3
|
Wu W, Yan Y, Yu Y, Wang X, Xu T, Li X. A self-sacrificing template strategy: In-situ construction of bimetallic MOF-derived self-supported CuCoSe nanosheet arrays for high-performance supercapacitors. J Colloid Interface Sci 2023; 650:358-368. [PMID: 37413870 DOI: 10.1016/j.jcis.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Transition metal selenides (TMSs) are viewed as a prospective high-capacity electrode material for asymmetric supercapacitors (ASCs). However, the inability to expose sufficient active sites due to the limitation of the area involved in the electrochemical reaction severely limits their inherent supercapacitive properties. Herein, a self-sacrificing template strategy is developed to prepare self-supported CuCoSe (CuCoSe@rGO-NF) nanosheet arrays by in situ construction of copper-cobalt bimetallic organic framework (CuCo-MOF) on rGO-modified nickel foam (rGO-NF) and rational design of Se2- exchange process. Nanosheet arrays with high specific surface area are considered to be ideal platforms for accelerating electrolyte penetration and exposing rich electrochemical active sites. As a result, the CuCoSe@rGO-NF electrode delivers a high specific capacitance of 1521.6 F/g at 1 A/g, good rate performance and an excellent capacitance retention of 99.5% after 6000 cycles. The assembled ASC device has a high energy density of 19.8 Wh kg-1 at 750 W kg-1 and an ideal capacitance retention of 86.2% after 6000 cycles. This proposed strategy offers a viable strategy for designing and constructing electrode materials with superior energy storage performance.
Collapse
Affiliation(s)
- Wenrui Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yue Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yingsong Yu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xing Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tao Xu
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Xianfu Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
4
|
Yang B, Zhang D, Xia X, Meng X, He Y, Wang B, Han Z, Wang K. Boosting energy density of the aqueous supercapacitors by employing trifluoroacetic acid as a novel high voltage electrolyte. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Jiao Z, Chen Y, Du M, Demir M, Yan F, Xia W, Zhang Y, Wang C, Gu M, Zhang X, Zou J. 3D hollow NiCo LDH nanocages anchored on 3D CoO sea urchin-like microspheres: A novel 3D/3D structure for hybrid supercapacitor electrodes. J Colloid Interface Sci 2023; 633:723-736. [PMID: 36508396 DOI: 10.1016/j.jcis.2022.11.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The research on the structure of advanced electrode materials is significant in the field of supercapacitors. Herein, for the first time, we propose a novel 3D/3D composite structure by a multi-step process, in which 3D hollow NiCo LDH nanocages are immobilized on 3D sea urchin-like CoO microspheres. Results show that the 3D CoO acts as an efficient and stable channel for ion diffusion, while the hollow NiCo LDH provides abundant redox-active sites. The calculated results based on density function theory (DFT) show that the CoO@NiCo LDH heterostructure has an enhanced density of states (DOS) near the Fermi level and strong adsorption capacity for OH-, indicating its excellent electrical conductivity and electrochemical reaction kinetics. As a result, the CoO@NiCo LDH electrode has an areal specific capacity of 4.71C cm-2 at a current density of 3 mA cm-2 (440.19C g-1 at 0.28 A g-1) and can still maintain 88.76 % of the initial capacitance after 5000 cycles. In addition, the assembled hybrid supercapacitor has an energy density of 5.59 mWh cm-3 at 39.54 mW cm-3.
Collapse
Affiliation(s)
- Zhichao Jiao
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Yuanqing Chen
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Miao Du
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Muslum Demir
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
| | - Fuxue Yan
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Weimin Xia
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Ying Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Cheng Wang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Mengmeng Gu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoxuan Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Juntao Zou
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education, Xi'an University of Technology, Xi'an 710048, China; Shaanxi Province Key Laboratory of Electrical Materials and Infiltration Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
6
|
Duan HY, Li XY, Zhang CX, He C. A novel trigonal bipyramidal cage-based Zn( ii)-MOF featuring two types of trinuclear clusters with high gas sorption properties. CrystEngComm 2022. [DOI: 10.1039/d2ce01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique trigonal bipyramidal cage-based Zn(ii)-MOF built from a linear trinuclear pin-wheel cluster and a triangular trinuclear cluster was prepared and shows a moderate gas adsorption amounts and high selectivities towards C2Hn/CH4 and C2H2/CO2.
Collapse
Affiliation(s)
- Hai-Yu Duan
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xiu-Yuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Chen-Xu Zhang
- Department of Medical Equipment and Metrology, School of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Chaozheng He
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| |
Collapse
|
7
|
Shi Z, Yuan Y, Xiao Q, Li Z, Zhu J. Carbonate doped NiCo-LDH modified with PANI for high performance asymmetric supercapacitors. CrystEngComm 2022. [DOI: 10.1039/d2ce00241h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The as-prepared PANI-NCLDH/CO32− composite has two forms: linear and clustered. The good combination style makes the prepared composite electrode and the assembled device have excellent electrochemical performance.
Collapse
Affiliation(s)
- Zhicheng Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yuan Yuan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Qindan Xiao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Zhong Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jiliang Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|