1
|
Wang Q, Wang X, Zhai Y, Zheng Z, Shen H, Han Y, Chen Z, Jiang Z. Synthesis and Characterization of Phenazine-Based Redox Center for High-Performance Polymer Poly(aryl ether sulfone)-5,10-Diphenyl-dihydrophenazine. Molecules 2024; 29:1618. [PMID: 38611897 PMCID: PMC11013081 DOI: 10.3390/molecules29071618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Phenazine-based redox-active centers are capable of averting chemical bond rearrangements by coupling during the reaction process, leading to enhanced stabilization of the material. When introduced into a high-performance polymer with excellent physicochemical properties, they can be endowed with electrochemical properties and related prospective applications while maintaining the capabilities of the materials. In this study, a facile C-N coupling method was chosen for the synthesis of serial poly(aryl ether sulfone) materials containing phenazine-based redox-active centers and to explore their electrochemical properties. As expected, the cyclic voltammetry curves of PAS-DPPZ-60, which basically overlap after thousands of cycles, indicate the stability of the electrochemical properties. As an electrochromic material, the transmittance change in PAS-DPPZ-60 exhibits only a slight attenuation after as long as 600 cycles. Meanwhile, as an organic battery cathode material, PAS-DPPZ has a theoretical specific capacity of 126 mAh g-1, and the capacity retention rate is 82.6% after 100 cycles at a 0.1 C current density. The perfect combination of advantageous features between phenazine and poly(aryl ether sulfone) is considered to be the reason for the favorable electrochemical performance of the material series.
Collapse
Affiliation(s)
- Qilin Wang
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China; (Q.W.); (X.W.); (H.S.); (Z.J.)
| | - Xuehan Wang
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China; (Q.W.); (X.W.); (H.S.); (Z.J.)
| | - Yuehui Zhai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Zhibo Zheng
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China;
| | - Huilin Shen
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China; (Q.W.); (X.W.); (H.S.); (Z.J.)
| | - Yuntao Han
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China; (Q.W.); (X.W.); (H.S.); (Z.J.)
| | - Zheng Chen
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China; (Q.W.); (X.W.); (H.S.); (Z.J.)
| | - Zhenhua Jiang
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China; (Q.W.); (X.W.); (H.S.); (Z.J.)
| |
Collapse
|
2
|
Structural influence of the length and functionality of N,N-donor spacers in Cd(II) ladder-type coordination polymers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Preparation and structure analysis of non-covalent interactions directed 11 adducts from 2-amino-5-methylthiazole and organic acids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|