1
|
Madhukar N, Adusumalli VNKB, Koppisetti HVSRM, Mondal A, Ito A, Park YI, Mahalingam V. Selective Detection of Chromate and Permanganate Ions Using Gallic Acid Capped CaF 2:Tb 3+ Nanocrystals. Chem Asian J 2024:e202400597. [PMID: 39145684 DOI: 10.1002/asia.202400597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
In this study, we have developed ligand-sensitized Ln3+-doped nanocrystals (NCs) for the selective sensing of Cr2O7 2- and MnO4 - ions in nanomolar concentrations. This is accomplished with the gallic acid capped-CaF2:Tb3+ NCs. These NCs display bright green emission through an efficient energy transfer from surface functionalized gallic acid molecules to Tb3+ ions upon UV light excitation. The luminescence from Tb3+ ions are selectively quenched by the addition of Cr2O7 2- and MnO4 - anions. The reduction in the luminescence intensity is found to be quite selective, as the addition of other strong oxidizing species (I-, F-, Br-, Cl-, PO3 2-, SO4 2-, VO3 -, WO4 2-, IO3 -, ClO4 -,) had minimal impact on the luminescence intensity of Tb3+ ions. The calculated limit of detection from the experimental results (for the 3σ/slope criterion) is 77 nM and 55 nM for K2Cr2O7 and KMnO4, respectively. The findings show that tuning the resonance energy transfer (RET) between analytes and Tb3+ inside the NCs serves as a tool for the detection of dichromate and permanganate ions selectively.
Collapse
Affiliation(s)
- Nikita Madhukar
- Graduate School Engineering, Kochi University of Technology, Kami, Kochi, 782-8502, Japan
| | - Venkata N K B Adusumalli
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South-Korea
| | - Heramba V S R M Koppisetti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Ayan Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Akitaka Ito
- Graduate School Engineering, Kochi University of Technology, Kami, Kochi, 782-8502, Japan
| | - Yong Ii Park
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South-Korea
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
2
|
Li Y, Ren H, Chi C, Miao Y. Artificial Intelligence-Guided Gut-Microenvironment-Triggered Imaging Sensor Reveals Potential Indicators of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307819. [PMID: 38569219 PMCID: PMC11187919 DOI: 10.1002/advs.202307819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/16/2024] [Indexed: 04/05/2024]
Abstract
The gut-brain axis has recently emerged as a crucial link in the development and progression of Parkinson's disease (PD). Dysregulation of the gut microbiota has been implicated in the pathogenesis of this disease, sparking growing interest in the quest for non-invasive biomarkers derived from the gut for early PD diagnosis. Herein, an artificial intelligence-guided gut-microenvironment-triggered imaging sensor (Eu-MOF@Au-Aptmer) to achieve non-invasive, accurate screening for various stages of PD is presented. The sensor works by analyzing α-Syn in the gut using deep learning algorithms. By monitoring changes in α-Syn, the sensor can predict the onset of PD with high accuracy. This work has the potential to revolutionize the diagnosis and treatment of PD by allowing for early intervention and personalized treatment plans. Moreover, it exemplifies the promising prospects of integrating artificial intelligence (AI) and advanced sensors in the monitoring and prediction of a broad spectrum of diseases and health conditions.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of Medicine of University of Electronic Science and Technology of ChinaNo. 32, West Section 2, First Ring Road, Qingyang DistrictChengdu610000China
- Institute of Communications Engineering & Department of Electrical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Hong‐Xia Ren
- Sichuan Technology & Business CollegeChengdu611800China
| | - Chong‐Yung Chi
- Institute of Communications Engineering & Department of Electrical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Yang‐Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of Medicine of University of Electronic Science and Technology of ChinaNo. 32, West Section 2, First Ring Road, Qingyang DistrictChengdu610000China
| |
Collapse
|
3
|
Liu W, Qiao J, Gu J, Liu Y. Hydrogen-Bond-Connected 2D Zn-LMOF with Fluorescent Sensing for Inorganic Pollutants and Nitro Aromatic Explosives in the Aqueous Phase. Inorg Chem 2023; 62:1272-1278. [PMID: 36621952 DOI: 10.1021/acs.inorgchem.2c04155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, a novel luminescent Zn-LMOF, JLU-MOF109 ([Zn(PBBA)(H2O)]·3DMF·2H2O, PBBA = 4,4'-(2,6-pyrazinediyl)bis[benzoic acid], DMF = N,N-dimethylformamide), was successfully synthesized under solvothermal conditions. Zinc ions are connected by PBBA ligands to form two-dimensional (2D) layers, and the layers are further propped up through hydrogen-bonding interactions. JLU-MOF109 exhibits good sensitivity to inorganic pollutants, Fe3+ and Cr2O72-, as well as nitro aromatic explosives, 2,4,6-trinitrophenol and 2,4-dinitrophenol. JLU-MOF109 exhibits high Ksv (at 104 M-1 level) and low limit of detection values (∼10-6 mol/L) for the abovementioned hazardous pollutants, which is better than a majority of previously reported MOF-based fluorescent sensors. With good stability in the aqueous phase, JLU-MOF109 can serve as a promising chemical sensor for pollutant detection in wastewater.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junyi Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Liu W, Wang F, Chen X, Zhi W, Wang X, Xu B, Yang B. Design of "turn-off" luminescent Ln-MOFs for sensitive detection of cyanide anions. Dalton Trans 2022; 51:15741-15749. [PMID: 36178037 DOI: 10.1039/d2dt01844f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 2D lanthanide metal-organic frameworks (Ln-MOFs), namely {[Eu2(DBTA)3(DMF)2]·DMF}n (1) and {[Tb2(DBTA)3(DMF)2]·DMF}n (2) (H2DBTA = 2,5-dibromoterephthalic acid), have been successfully synthesized by the solvothermal method. Single-crystal X-ray diffraction results proved that the complexes possess the same topological structure of a (42·6)2(42·84)(47·63)2-connected net. The recognition of CN- from interfering anions with a low detection limit by "turn-off" luminescence makes them promising candidates for the highly selective and sensitive detection of the cyanide ion. The Ln-MOFs 1 and 2 exhibit excellent chemical sensing properties for CN- with efficiency, selectivity, and excellent performance in various mixed anions. The evaluation parameters, including the quenching constant and detection limit, have been investigated to obtain the detection performance for CN-.
Collapse
Affiliation(s)
- Weisai Liu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Fei Wang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoyi Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wenke Zhi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xuquan Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Baoqiang Xu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| |
Collapse
|
5
|
Rani P, Husain A, Bhasin KK, Kumar G. Metal-Organic Framework-Based Selective Molecular Recognition of Organic Amines and Fixation of CO 2 into Cyclic Carbonates. Inorg Chem 2022; 61:6977-6994. [PMID: 35481354 DOI: 10.1021/acs.inorgchem.2c00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis and structural depiction of two new metal-organic frameworks (MOFs), namely, [{Zn(L)(oba)}·4H2O]α (Zn-MOF-1) and [{Cd1/2(L)1/2(nipa)1/2(H2O)1/2}·(DMF)1/2(H2O)]α (Cd-MOF-2) (where L = N2,N6-di(pyridin-4-yl)naphthalene-2,6-dicarboxamide, 4,4'-H2oba = 4,4'-oxybisbenzoic acid, and 5-H2nipa = 5-nitroisophthalic acid) are reported. Both Zn-MOF-1 and Cd-MOF-2 have been prepared by reacting ligand L and coligand 4,4'-H2oba or 5-H2nipa with the respective dihydrates of Zn(OAc)2 and Cd(OAc)2 (OAc = acetate). Crystal structure X-ray analysis discloses that Zn-MOF-1 displays an overall 2D → 3D interpenetrated framework structure. The topological analysis by ToposPro suggests a (4)-connected uninodal sql topology with a point symbol of {44·62} having 2D + 2D parallel polycatenation. However, crystal packing of Cd-MOF-2 adapted a porous framework architecture and was topologically simplified as (3,4)-connected binodal 2D net. In addition, both Zn-MOF-1 and Cd-MOF-2 were proved to be multifunctional materials for the recognition of organic amines and in the fixation of CO2 to cyclic carbonates. Remarkably, Zn-MOF-1 and Cd-MOF-2 showed very good fluorescence stability in aqueous media and have shown 98 and 97% quenching efficiencies, respectively, for 4-aminobenzoic acid (4-ABA), among all of the researched amines. The mechanistic study of organic amines recognition proposed that fluorescence quenching happened mainly through hydrogen-bonding and π-π stacking interactions. Additionally, cycloaddition of CO2 to epoxide in the presence of Zn-MOF-1 and Cd-MOF-2 afforded up to 96% of cyclic carbonate within 24 h. Both Zn-MOF-1 and Cd-MOF-2 exhibited recyclability for up to five cycles without noticing an appreciable loss in their sensing or catalytic efficiency.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ahmad Husain
- Department of Chemistry, DAV University Jalandhar, Jalandhar, Punjab 144012, India
| | - K K Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
6
|
Synthesis and properties of a novel photochromic metal organic framework for rapid amine selective sensing and Cr2O72− detection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Zhou ZD, Wang CY, Zhu GS, Du B, Yu BY, Wang CC. Water-stable europium(III) and terbium(III)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Li J, Zhao YX, Wu Q, Yang H, Lu J, Ma HY, Wang SN, Li YW. A Cd-MOF fluorescence sensor with dual functional sites for efficient detection of metal ions in multifarious water environments. CrystEngComm 2021. [DOI: 10.1039/d1ce01308d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A 2D MOF displays high performance luminescence quenching for detecting Fe3+ and Cu2+ in pure water, actual river water and simulated HEPES with superior low LODs. Multiple experiments and DFT calculations co-verify a weak interaction quenching mechanism.
Collapse
Affiliation(s)
- Jing Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yun-Xiu Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Qian Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| |
Collapse
|