1
|
Xu J, Shi X, Yi M, Chi Y, Mao Z, Yang B, Jung YM. Lithium-doped ZrO 2 nanoparticles for SERS-based norfloxacin drug detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125239. [PMID: 39383546 DOI: 10.1016/j.saa.2024.125239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a highly specific and ultrasensitive analytical technique; thus, it is an ideal candidate for therapeutic drug monitoring. However, SERS measurements of drugs in a sample are inevitably affected by the environment. In this study, we synthesized ZrO2 nanoparticles (NPs) doped with the first group of elements (Li, Na, and K) in the main block and evaluated their SERS performance. The results showed that Li-ion doping could significantly enhance the SERS effect, and the degree of enhancement depended on the type and concentration of the doped ions. Compared with the highly stable ZrO2, Li ion-doped ZrO2 (Li-ZrO2) exhibited a significant increase in SERS activity. In particular, 1 % Li-ZrO2 NPs exhibited excellent SERS enhancement with an enhancement factor (EF) of 2.60 × 104, which was attributed to the decreased band gap and improved the charge transfer (CT) process after Li ion doping. The adsorption capacity of the Li-ZrO2 NPs for norfloxacin (NOR) molecules was gradually saturated with time. In addition, both acidic and alkaline conditions were unfavorable for NOR detection by the substrate. The SERS intensity exhibited a linear relationship within the NOR concentration range of 10-3-10-6 mol/L, and approximately 97.51 % of the active ingredients were detected, with a competitive detection limit of 10-6 mol/L. Furthermore, NOR detection is cost-effective and time-efficient, and the results of our study can aid in the research process and support practical applications. The proposed study provides a guidance for improving the SERS activity of semiconductors for sensing.
Collapse
Affiliation(s)
- Jiawen Xu
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Xiumin Shi
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China.
| | - Mingyue Yi
- Jilin Zijin Copper Co., Ltd., Hunchun 133300, PR China
| | - Yanze Chi
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Zhu Mao
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Bo Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
2
|
Jin S, Zhang D, Yang B, Guo S, Chen L, Jung YM. Noble metal-free SERS: mechanisms and applications. Analyst 2023; 149:11-28. [PMID: 38051259 DOI: 10.1039/d3an01669b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a very important tool in vibrational spectroscopy. The coupling of nanomaterials induces local surface plasmon resonance (LSPR), which contributes greatly to SERS. Due to its remarkable sensitivity in trace detection, SERS has gained prominence in the fields of catalysis, biosensors, drug tracking, and optoelectronic devices. SERS activity is believed to be closely related to the LSPR and charge transfer (CT) of the material. Noble metal nanostructures have been commonly used as SERS-active substrates due to their strong local electric fields and relatively mature preparation, application, and enhancement mechanisms. In recent years, SERS research based on semiconductor materials has attracted significant attention because semiconductor materials have advantages such as repeatable preparation, simple pretreatment, stable SERS spectra and superior biocompatibility, stability, and reproducibility. Semiconductor-based SERS has the potential to enrich SERS theory and applications. Thus, the development of semiconductor materials will introduce a new epoch for SERS-based research. In this review, we outline the two main kinds of semiconductor SERS-active substrates: inorganic and organic semiconductor SERS-active substrates. We also provide an overview of the SERS mechanism for different kinds of materials and SERS-based applications.
Collapse
Affiliation(s)
- Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, USA
| | - Daxin Zhang
- College of Science, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Bo Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China.
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Lei Chen
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
3
|
Jin S, Park E, Guo S, Park Y, Park J, Yoo HS, Park JH, Chen L, Jung YM. Process monitoring of photocatalytic degradation of 2,4-dinitrotoluene by Au-decorated Fe 3O 4@TiO 2 nanoparticles: surface-enhanced Raman scattering method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121155. [PMID: 35313176 DOI: 10.1016/j.saa.2022.121155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Recently, the degradation and detection of 2,4-dinitrotoluene (2,4-DNT) capable of producing 2,4,6-trinitrotoluene (TNT) for environmental and human health risks have been developed. We prepared photoresponsive Au-decorated Fe3O4@TiO2 nanoparticles (Fe3O4@TiO2-Au NPs) under sunlight simulated Xe lamp irradiation. The photodegradation process of 2,4-DNT by Fe3O4@TiO2-Au NPs was successfully monitored by surface-enhanced Raman scattering (SERS). Since SERS monitoring shows intrinsic information about the molecular structure, it was possible to predict the photodegradation of 2,4-DNT. The 2,4-DNT photodegradation mechanism based on two-dimensional correlation spectroscopy (2D-COS), which provides very beneficial information for a deeper understanding of systems, has been identified. We confirmed that Fe3O4@TiO2-Au NPs can be widely used in organic pollutant degradation under sunlight. Furthermore, the combination of SERS based process monitoring and 2D-COS can be a convincing analytical technique for photodegradation studies of organic pollutants.
Collapse
Affiliation(s)
- Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Jongmin Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea
| | - Hyuk Sang Yoo
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea; Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea
| | - Lei Chen
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|