1
|
Shen K, Sun K, Gelin MF, Zhao Y. Cavity-Tuned Exciton Dynamics in Transition Metal Dichalcogenides Monolayers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4127. [PMID: 39203305 PMCID: PMC11356741 DOI: 10.3390/ma17164127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
A fully quantum, numerically accurate methodology is presented for the simulation of the exciton dynamics and time-resolved fluorescence of cavity-tuned two-dimensional (2D) materials at finite temperatures. This approach was specifically applied to a monolayer WSe2 system. Our methodology enabled us to identify the dynamical and spectroscopic signatures of polaronic and polaritonic effects and to elucidate their characteristic timescales across a range of exciton-cavity couplings. The approach employed can be extended to simulation of various cavity-tuned 2D materials, specifically for exploring finite temperature nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Sun K, Shen K, Gelin MF, Zhao Y. Exciton Dynamics and Time-Resolved Fluorescence in Nanocavity-Integrated Monolayers of Transition-Metal Dichalcogenides. J Phys Chem Lett 2023; 14:221-229. [PMID: 36583951 DOI: 10.1021/acs.jpclett.2c03511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We have developed an ab initio-based, fully quantum, numerically accurate methodology for the simulation of the exciton dynamics and time- and frequency-resolved fluorescence spectra of the cavity-controlled two-dimensional materials at finite temperatures and applied this methodology to the single-layer WSe2 system. Specifically, the multiple Davydov D2 Ansatz has been employed in combination with the method of thermofield dynamics for the finite-temperature extension of accurate time-dependent variation. This allowed us to establish dynamical and spectroscopic signatures of the polaronic and polaritonic effects as well as uncover their characteristic time scales in the relevant range of temperatures. Our study reveals the pivotal role of multidimensional conical intersections in controlling the many-body dynamics of highly intertwined excitonic, phononic, and photonic modes.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou310018, China
| | - Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| |
Collapse
|
3
|
Cainelli M, Borrelli R, Tanimura Y. Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach. J Chem Phys 2022; 157:084103. [DOI: 10.1063/5.0102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically investigated the effect of mixed Frenkel (F) and charge transfer (CT) states on the spectral properties of perylene bisimide (PBI) derivatives, focusing on the role of strong electron-phonon interactions. The model consists of a four-level system described by the Holstein Hamiltonian coupled to independent local heat-baths on each site, described by Brownian spectral distribution functions. We employ the reduced hierarchical equations of motion (HEOM) approach to calculate the time evolution of the system and compare it to the pure F exciton cases. We compute the absorption and time-gated fluorescence (TGF) spectra for different exciton transfer integrals and F-CT band gap conditions. The coherence length of excitons ($N_{coh}$) is evaluated employing two different definitions. We observe the presence of an excited hot state peak whose intensity is associated with the delocalization of the excited species and ultrafast dynamics that are solely dependent on the frequency of the local bath. The results indicate that the inclusion of CT states promotes localization of the excitons which is manifested in a decrease in the intensity of the hot state peak and the 0--1 peak, and an increase in the intensity of the 0--0 emission peak in TGF spectrum, leading to a decrease of $N_{coh}$.
Collapse
Affiliation(s)
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | | |
Collapse
|
4
|
Shen K, Sun K, Zhao Y. Simulation of Emission Spectra of Transition Metal Dichalcogenide Monolayers with the Multimode Brownian Oscillator Model. J Phys Chem A 2022; 126:2706-2715. [PMID: 35467864 DOI: 10.1021/acs.jpca.2c01522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The multimode Brownian oscillator model is employed to simulate the emission spectra of transition metal dichalcogenide (TMD) monolayers. Good agreement is obtained between measured and simulated photoluminescence spectra of WSe2, WS2, MoSe2, and MoS2 at various temperatures. The Huang-Rhys factor extracted from the model can be associated with that from the modified semiempirical Varshni equation at high temperatures. Individual mechanisms leading to the unique temperature-dependent emission spectra of those TMDs are validated by the multimode Brownian oscillator (MBO) fitting, while it is, in turn, confirmed that the MBO analysis is an effective method for studying the optical properties of TMD monolayers. Parameters extracted from the MBO fitting can be used to explore exciton-photon-phonon dynamics of TMDs in a more comprehensive model.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
5
|
Sun K, Dou C, Gelin MF, Zhao Y. Dynamics of disordered Tavis-Cummings and Holstein-Tavis-Cummings models. J Chem Phys 2022; 156:024102. [PMID: 35032972 DOI: 10.1063/5.0076485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By employing the time-dependent variational principle and the versatile multi-D2 Davydov trial states, in combination with the Green's function method, we study the dynamics of the Tavis-Cummings model and the Holstein-Tavis-Cummings model in the presence of diagonal disorder and cavity-qubit coupling disorder. For the Tavis-Cummings model, time evolution of the photon population, the optical absorption spectra, and the hetero-entanglement between the qubits and the cavity mode are calculated by using the Green's function method to corroborate numerically exact results of Davydov's Ansätze. For the Holstein-Tavis-Cummings model, only the latter is utilized to simulate effects of disorder on the photon population dynamics and the absorption spectra. We have demonstrated that the complementary employment of analytical and numerical methods permits uncovering a fairly comprehensive picture of a variety of complex behaviors in disordered multidimensional polaritonic cavity quantum electrodynamics systems.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Cunzhi Dou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Jakučionis M, Žukas A, Abramavicius D. Modeling Molecular J and H Aggregates using Multiple-Davydov D2 Ansatz. Phys Chem Chem Phys 2022; 24:17665-17672. [DOI: 10.1039/d2cp00819j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear absorption spectrum of J and H molecular aggregates is studied using the time-dependent Dirac-Frenkel variational principle (TDVP) with the multi-Davydov D2 (mD2) trial wavefunction (Ansatz). Both the electronic...
Collapse
|
7
|
Mardazad S, Xu Y, Yang X, Grundner M, Schollwöck U, Ma H, Paeckel S. Quantum dynamics simulation of intramolecular singlet fission in covalently linked tetracene dimer. J Chem Phys 2021; 155:194101. [PMID: 34800955 DOI: 10.1063/5.0068292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we study singlet fission in tetracene para-dimers, covalently linked by a phenyl group. In contrast to most previous studies, we account for the full quantum dynamics of the combined excitonic and vibrational system. For our simulations, we choose a numerically unbiased representation of the molecule's wave function, enabling us to compare with experiments, exhibiting good agreement. Having access to the full wave function allows us to study in detail the post-quench dynamics of the excitons. Here, one of our main findings is the identification of a time scale t0 ≈ 35 fs dominated by coherent dynamics. It is within this time scale that the larger fraction of the singlet fission yield is generated. We also report on a reduced number of phononic modes that play a crucial role in the energy transfer between excitonic and vibrational systems. Notably, the oscillation frequency of these modes coincides with the observed electronic coherence time t0. We extend our investigations by also studying the dependency of the dynamics on the excitonic energy levels that, for instance, can be experimentally tuned by means of the solvent polarity. Here, our findings indicate that the singlet fission yield can be doubled, while the electronic coherence time t0 is mainly unaffected.
Collapse
Affiliation(s)
- Sam Mardazad
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuexiao Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Martin Grundner
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Ulrich Schollwöck
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sebastian Paeckel
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| |
Collapse
|
8
|
Gelin MF, Velardo A, Borrelli R. Efficient quantum dynamics simulations of complex molecular systems: A unified treatment of dynamic and static disorder. J Chem Phys 2021; 155:134102. [PMID: 34624969 DOI: 10.1063/5.0065896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We present a unified and highly numerically efficient formalism for the simulation of quantum dynamics of complex molecular systems, which takes into account both temperature effects and static disorder. The methodology is based on the thermo-field dynamics formalism, and Gaussian static disorder is included into simulations via auxiliary bosonic operators. This approach, combined with the tensor-train/matrix-product state representation of the thermalized stochastic wave function, is applied to study the effect of dynamic and static disorders in charge-transfer processes in model organic semiconductor chains employing the Su-Schrieffer-Heeger (Holstein-Peierls) model Hamiltonian.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | |
Collapse
|