1
|
Mathews PD, Gama GS, Megiati HM, Madrid RRM, Garcia BBM, Han SW, Itri R, Mertins O. Flavonoid-Labeled Biopolymer in the Structure of Lipid Membranes to Improve the Applicability of Antioxidant Nanovesicles. Pharmaceutics 2024; 16:141. [PMID: 38276511 PMCID: PMC10819309 DOI: 10.3390/pharmaceutics16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.
Collapse
Affiliation(s)
- Patrick D. Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
- Institute of Biosciences, Sao Paulo State University, Botucatu 18618-689, Brazil
| | - Gabriella S. Gama
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Hector M. Megiati
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Rafael R. M. Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Bianca B. M. Garcia
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Sang W. Han
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| |
Collapse
|
2
|
Jones BE, Kelly EA, Cowieson N, Divitini G, Evans RC. Light-Responsive Molecular Release from Cubosomes Using Swell-Squeeze Lattice Control. J Am Chem Soc 2022; 144:19532-19541. [PMID: 36222426 DOI: 10.1021/jacs.2c08583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimuli-responsive materials are crucial to advance controlled delivery systems for drugs and catalysts. Lyotropic liquid crystals (LLCs) have well-defined internal structures suitable to entrap small molecules and can be broken up into low-viscosity dispersions, aiding their application as delivery systems. In this work, we demonstrate the first example of light-responsive cubic LLC dispersions, or cubosomes, using photoswitchable amphiphiles to enable external control over the LLC structure and subsequent on-demand release of entrapped guest molecules. Azobenzene photosurfactants (AzoPS), containing a neutral tetraethylene glycol head group and azobenzene-alkyl tail, are combined (from 10-30 wt %) into monoolein-water systems to create LLC phases. Homogenization of the bulk LLC forms dispersions of particles, ∼200 nm in diameter with internal bicontinuous primitive cubic phases, as seen using small-angle X-ray scattering and cryo-transmission electron microscopy. Notably, increasing the AzoPS concentration leads to swelling of the cubic lattice, offering a method to tune the internal nanoscale structure. Upon UV irradiation, AzoPS within the cubosomes isomerizes within seconds, which in turn leads to squeezing of the cubic lattice and a decrease in the lattice parameter. This squeeze mechanism was successfully harnessed to enable phototriggerable release of trapped Nile Red guest molecules from the cubosome structure in minutes. The ability to control the internal structure of LLC dispersions using light, and the dramatic effect this has on the retention of entrapped molecules, suggests that these systems may have huge potential for the next-generation of nanodelivery.
Collapse
Affiliation(s)
- Beatrice E Jones
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Elaine A Kelly
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
3
|
Martens CM, van Leuken SHM, Opdam J, Vis M, Tuinier R. The depletion thickness in solutions of semi-flexible polymers near colloidal surfaces: analytical approximations. Phys Chem Chem Phys 2022; 24:3618-3631. [PMID: 35103732 PMCID: PMC8827050 DOI: 10.1039/d1cp05026e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 01/12/2023]
Abstract
We derive a simple, yet accurate approximate mean-field expression for the depletion thickness δsf of a solution of dilute semi-flexible polymers next to a hard surface. In the case of a hard wall this equation has the simple form δsf = δ0[1 - tanh(psf/δ0)], where psf accounts for the degree of flexibility and δ0 is the depletion thickness in the case of fully flexible polymers. For fixed polymer coil size, increasing the chain stiffness leads to a decrease in the depletion thickness. The approach is also extended to include higher polymer concentrations in the semidilute regime. The analytical expressions are in quantitative agreement with numerical self-consistent field computations. A remarkable finding is that there is a maximum in the depletion thickness as a function of the chain stiffness in the semidilute concentration regime. This also means that depletion attractions between colloidal particles reach a maximum for a certain chain stiffness, which may have important implications for the phase stability of colloid-polymer mixtures. The derived equations could be useful for the description of interactions in- and phase stability of mixtures of colloids and semi-flexible polymers.
Collapse
Affiliation(s)
- C M Martens
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - S H M van Leuken
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - J Opdam
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - M Vis
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - R Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|