1
|
Jia PK, Wang JL, Zhao R, Jian JW, Yin BW, Cui G, Xie BB. Excited-State Decay and Photolysis of O-Nitrophenol before Proton Transfer. I: A Theoretical Investigation in the Microsolvated Atmospheric Environment. J Phys Chem A 2024; 128:9497-9509. [PMID: 39425687 DOI: 10.1021/acs.jpca.4c04890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
As a potential source of the hydroxyl (OH) radical and nitrous acid (HONO), photolysis of o-nitrophenol (ONP) is of significant interest in both experimental and theoretical studies. In the atmospheric environment, the number of water molecules surrounding ONP changes with the humidity of the air, leading to an anisotropic chemical environment. This may have an impact on the photodynamics of ONP and provide a mechanism that differs from previously reported ones in the gas phase or in solution. Herein, the high-level MS-CASPT2//CASSCF method was performed to elucidate the excited-state decay and the generation of the OH radical for ONP before proton transfer in the microsolvated surrounding. We found that the varying number of water molecules affects the ground-state structures and alters the energy levels of nπ* and ππ* at the Franck-Condon (FC) region. Nevertheless, this is not the case for the excited-state minima, which exhibit very similar adiabatic excitation properties. In addition, the presence of water molecules also significantly influences the intersection structures since hydrogen bonds will hinder or alleviate the rotation or pyramidalization of the nitro (NO2) group. This will, in turn, change the excited-state relaxation mechanism of ONP. Finally, we speculated that the OH radical might be formed in the hot ground state of ONP in the microsolvated surrounding after exploring all possible electronic states.
Collapse
Affiliation(s)
- Pei-Ke Jia
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou 451162, Henan, P. R. China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Rui Zhao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ji-Wen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| |
Collapse
|
2
|
Chang XP, Wang JL, Peng LY, Cen XJ, Yin BW, Xie BB. Mechanistic photophysics of tellurium-substituted cytosine: Electronic structure calculations and nonadiabatic dynamics simulations. Photochem Photobiol 2024; 100:339-354. [PMID: 37435854 DOI: 10.1111/php.13835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Previously, the MS-CASPT2 method was performed to study the static and qualitative photophysics of tellurium-substituted cytosine (TeC). To get quantitative information, we used our recently developed QTMF-FSSH dynamics method to simulate the excited-state decay of TeC. The CASSCF method was adopted to reduce the calculation costs, which was confirmed to provide reliable structures and energies as those of MS-CASPT2. A detailed structural analysis showed that only 5% trajectories will hop to the lower triplet or singlet state via the twisted (S2 /S1 /T2 )T intersection, while 67% trajectories will choose the planar intersections of (S2 /S1 /T3 /T2 /T1 )P and (S2 /S1 /T2 /T1 )P but subsequently become twisted in other electronic states. By contrast, ~28% trajectories will maintain in a plane throughout dynamics. Electronic population revealed that the S2 population will ultrafast transfer to the lower triplet or singlet state. Later, the TeC system will populate in the spin-mixed electronic states composed of S1 , T1 and T2 . At the end of 300 fs, most trajectories (~74%) will decay to the ground state and only 17.4% will survive in the triplet states. Our dynamics simulation verified that tellurium substitution will enhance the intersystem crossings, but the very short triplet lifetime (ca. 125 fs) will make TeC a less effective photosensitizer.
Collapse
Affiliation(s)
- Xue-Ping Chang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xu-Jiang Cen
- Ningbo Zhongtian Engineering Co., Ltd., Ningbo, China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
3
|
Xie M, Ren SX, Hu D, Zhong JM, Luo J, Tan Y, Li YP, Si LP, Cao J. The impact of the chalcogen-substitution element and initial spectroscopic state on excited-state relaxation pathways in nucleobase photosensitizers: a combination of static and dynamic studies. Phys Chem Chem Phys 2023; 25:27756-27765. [PMID: 37814579 DOI: 10.1039/d3cp03730d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The substitution of oxygen with chalcogen in carbonyl group(s) of canonical nucleobases gives an impressive triplet generation, enabling their promising applications in medicine and other emerging techniques. The excited-state relaxation S2(ππ*) → S1(nπ*) → T1(ππ*) has been considered the preferred path for triplet generation in these nucleobase derivatives. Here, we demonstrate enhanced quantum efficiency of direct intersystem crossing from S2 to triplet manifold upon substitution with heavier chalcogen elements. The excited-state relaxation dynamics of sulfur/selenium substituted guanines in a vacuum is investigated using a combination of static quantum chemical calculations and on-the-fly excited-state molecular dynamics simulations. We find that in sulfur-substitution the S2 state predominantly decays to the S1 state, while upon selenium-substitution the S2 state deactivation leads to simultaneous population of the S1 and T2,3 states in the same time scale and multi-state quasi-degeneracy region S2/S1/T2,3. Interestingly, the ultrafast deactivation of the spectroscopic S3 state of both studied molecules to the S1 state occurs through a successive S3 → S2 → S1 path involving a multi-state quasi-degeneracy S3/S2/S1. The populated S1 and T2 states will cross the lowest triplet state, and the S1 → T intersystem crossing happens in a multi-state quasi-degeneracy region S1/T2,3/T1 and is accelerated by selenium-substitution. The present study reveals the influence of both the chalcogen substitution element and initial spectroscopic state on the excited-state relaxation mechanism of nucleobase photosensitizers and also highlights the important role of multi-state quasi-degeneracy in mediating the complex relaxation process. These theoretical results provide additional insights into the intrinsic photophysics of nucleobase-based photosensitizers and are helpful for designing novel photo-sensitizers for real applications.
Collapse
Affiliation(s)
- Min Xie
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Shuang-Xiao Ren
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Die Hu
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Ji-Meng Zhong
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Jie Luo
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yin Tan
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yan-Ping Li
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Li-Ping Si
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Jun Cao
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou, 550018, P. R. China.
| |
Collapse
|
4
|
Zhu YH, Tang XF, Chang XP, Zhang TS, Xie BB, Cui G. Mechanistic Photophysics of Tellurium-Substituted Uracils: Insights from Multistate Complete-Active-Space Second-Order Perturbation Calculations. J Phys Chem A 2021; 125:8816-8826. [PMID: 34606278 DOI: 10.1021/acs.jpca.1c06169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The photophysical mechanisms of tellurium-substituted uracils were studied at the multistate complete-active-space second-order perturbation level with a particular focus on how the position and number of tellurium substitutions affect their nonadiabatic relaxation processes. Electronic structure analysis reveals that the lowest several excited states are closely concerned with the n and π orbitals at the Te7-C2 [Te8-C4] moiety of 2-tellurouracil (2TeU) [4TeU and 24TeU]. Both planar and twisted minima were optimized for 2TeU, whereas only planar ones were obtained for 4TeU and 24TeU, except for a twisted T1 minimum of 4TeU. Based on intersection structures and linearly interpolated internal coordinate paths, we proposed several feasible excited-state deactivation paths. It is found that the relaxation channels for 2TeU are more complicated than those of 4TeU and 24TeU. The electronic population transfer to the T1 state for 2TeU is easier than that for 4TeU and 24TeU in consideration of the barrier heights from the S2 Franck-Condon point to the S2/S1 or S2/T2 intersections. In addition, the recovery of the ground state from the T1 state for 2TeU will be more efficient than that for the other two systems as well.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|