1
|
Cui X, Zheng Z, Rahman MU, Hong X, Ji X, Li Z, Chen HF. Drude2019IDPC polarizable force field reveals structure-function relationship of insulin. Int J Biol Macromol 2024; 280:136256. [PMID: 39366599 DOI: 10.1016/j.ijbiomac.2024.136256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Intrinsically disordered proteins (IDPs) lack stable tertiary structures under physiological conditions, yet play key roles in biological processes and associated with human complex diseases. Their conformational characteristics and high content of charged residues make the use of polarizable force fields an advantageous for simulating IDPs. The Drude2019IDP polarizable force field, previously introduced, has demonstrated comprehensive enhancements and improvements in dipeptides, short peptides, and IDPs, achieving a balanced sampling between IDPs and structured proteins. However, the performance in simulating 5 dipeptides was found to be underestimate. Therefore, we individually performed reweighting and grid-based energy correction map (CMAP) optimization for these 5 dipeptides, resulting in the enhanced Drude2019IDPC force field. The performance of Drude2019IDPC was evaluated with 5 dipeptides, 5 disordered short peptides, and a representative IDP. The results demonstrated a marked improvement comparing with original Drude2019IDP. To further substantiate the capabilities of Drude2019IDPC, MD simulation and Markov state model (MSM) were applied to wild type and mutant for insulin, to elucidate the difference of conformational characteristics and transition path. The findings reveal that mutation can maintain the monomorphic characteristics, providing insights for engineered insulin development. These results indicate that Drude2019IDPC could be used to reveal the structure-function relationship for other proteins.
Collapse
Affiliation(s)
- Xiaochen Cui
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuoqi Zheng
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaokun Hong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaoyue Ji
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengxin Li
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Kausar N, Shier WT, Ahmed M, Maryam, Albekairi NA, Alshammari A, Saleem M, Imran M, Muddassar M. Investigation of the insecticidal potential of curcumin derivatives that target the Helicoverpa armigera sterol carrier protein-2. Heliyon 2024; 10:e29695. [PMID: 38660259 PMCID: PMC11040122 DOI: 10.1016/j.heliyon.2024.e29695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Cotton bollworm (Helicoverpa armigera) is a highly polyphagous, widely prevalent, and persistent Old World insect pest that affects numerous important crops that are directly consumed by people, including tomato, cotton, pigeon pea, chickpea, rice, sorghum, and cowpea. Insects do not synthesize steroids but obtain them from their diet. Inhibition of dietary uptake of steroids by insects is a potentially effective insecticidal mechanism that should not be toxic to humans and other mammals, who synthesize their steroids. Ten curcumin derivatives were tested against H. armigera sterol carrier protein-2 (HaSCP-2) for their potential as insecticidal agents. Curcumin derivatives were initially docked at the binding site of HaSCP-2 to determine their binding affinities and plausible binding modes. The binding modes predominantly show hydrophobic interactions of derivatives with Phe53, Phe110, and Phe89 as core interacting residues in the active site. Validation of in silico results was carried out by performing a fluorescence binding and displacement assay to determine the binding affinities of curcumin derivatives. Among a collection of curcumin derivatives tested, Cur10 showed the lowest IC50 value of 9.64 μM, while Cur07 was 19.86 μM, and Cur06 was 20.79 μM. There was a significant negative correlation between the ability of the curcumin derivatives tested to displace the fluorescent probe from the sterol binding site of HaSCP-2 and to inhibit Sf9 insect cell growth in culture, which is consistent with the curcumin derivatives acting by the novel mechanism of blocking sterol uptake. Then molecular dynamics simulation studies validated the predicted binding modes and the interactions of curcumin derivatives with HaSCP-2 protein. In conclusion, these studies support the potential use of curcumin derivatives as insecticidal agents.
Collapse
Affiliation(s)
- Naeema Kausar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Wayne Thomas Shier
- College of Pharmacy, Department of Medicinal Chemistry, University of Minnesota, 55455, USA
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Maryam
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- KAM-School of Life Sciences, FC College (A Chartered University), Lahore, 54000, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| |
Collapse
|
3
|
Galano‐Frutos JJ, Sancho J. Energy, water, and protein folding: A molecular dynamics-based quantitative inventory of molecular interactions and forces that make proteins stable. Protein Sci 2024; 33:e4905. [PMID: 38284492 PMCID: PMC10804899 DOI: 10.1002/pro.4905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Protein folding energetics can be determined experimentally on a case-by-case basis but it is not understood in sufficient detail to provide deep control in protein design. The fundamentals of protein stability have been outlined by calorimetry, protein engineering, and biophysical modeling, but these approaches still face great difficulty in elucidating the specific contributions of the intervening molecules and physical interactions. Recently, we have shown that the enthalpy and heat capacity changes associated to the protein folding reaction can be calculated within experimental error using molecular dynamics simulations of native protein structures and their corresponding unfolded ensembles. Analyzing in depth molecular dynamics simulations of four model proteins (CI2, barnase, SNase, and apoflavodoxin), we dissect here the energy contributions to ΔH (a key component of protein stability) made by the molecular players (polypeptide and solvent molecules) and physical interactions (electrostatic, van der Waals, and bonded) involved. Although the proteins analyzed differ in length, isoelectric point and fold class, their folding energetics is governed by the same quantitative pattern. Relative to the unfolded ensemble, the native conformations are enthalpically stabilized by comparable contributions from protein-protein and solvent-solvent interactions, and almost equally destabilized by interactions between protein and solvent molecules. The native protein surface seems to interact better with water than the unfolded one, but this is outweighed by the unfolded surface being larger. From the perspective of physical interactions, the native conformations are stabilized by van de Waals and Coulomb interactions and destabilized by conformational strain arising from bonded interactions. Also common to the four proteins, the sign of the heat capacity change is set by interactions between protein and solvent molecules or, from the alternative perspective, by Coulomb interactions.
Collapse
Affiliation(s)
- Juan José Galano‐Frutos
- Biocomputation and Complex Systems Physics Institute (BIFI)‐Joint Unit GBsC‐CSICUniversity of ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de CienciasUniversity of ZaragozaZaragozaSpain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)‐Joint Unit GBsC‐CSICUniversity of ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de CienciasUniversity of ZaragozaZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
| |
Collapse
|
4
|
Park J, Lee HS, Kim H, Choi JM. Conformational landscapes of artificial peptides predicted by various force fields: are we ready to simulate β-amino acids? Phys Chem Chem Phys 2023; 25:7466-7476. [PMID: 36848062 DOI: 10.1039/d2cp05998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
With the introduction of artificial peptides as antimicrobial agents and organic catalysts, numerous efforts have been made to design foldamers with desirable structures and functions. Computational tools are a helpful proxy for revealing the dynamic structures at atomic resolution and understanding foldamer's complex structure-function relationships. However, the performance of conventional force fields in predicting the structures of artificial peptides has not been systematically evaluated. In this study, we critically assessed three popular force fields, AMBER ff14SB, CHARMM36m, and OPLS-AA/L, in predicting conformational propensities of a β-peptide foldamer at monomer and hexamer levels. Simulation results were compared to those obtained from quantum chemistry calculations and experimental data. We also utilised replica exchange molecular dynamics simulations to investigate the energy landscape of each force field and assess the similarities and differences between force fields. We compared different solvent systems in the AMBER ff14SB and CHARMM36m frameworks and confirmed the unanimous role of hydrogen bonds in shaping energy landscapes. We anticipate that our data will pave the way for further improvements to force fields and for understanding the role of solvents in peptide folding, crystallisation, and engineering.
Collapse
Affiliation(s)
- Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hee-Seung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea. .,Center for Multiscale Chiral Architectures, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Jiang Y, Chen HF. Performance evaluation of the balanced force field ff03CMAP for intrinsically disordered and ordered proteins. Phys Chem Chem Phys 2022; 24:29870-29881. [PMID: 36468450 DOI: 10.1039/d2cp04501j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) have been found to be closely associated with various human diseases. Because IDPs have no fixed tertiary structure under physiological conditions, current experimental methods, such as X-ray spectroscopy, NMR, and CryoEM, cannot capture all the dynamic conformations. Molecular dynamics simulation is an useful tool that is widely used to study the conformer distributions of IDPs and has become an important complementary tool for experimental methods. However, the accuracy of MD simulations directly depends on utilizing a precise force field. Recently a CMAP optimized force field based on the Amber ff03 force field (termed ff03CMAP herein) was developed for a balanced sampling of IDPs and folded proteins. In order to further evaluate the performance, more types of disordered and ordered proteins were used to test the ability for conformer sampling. The results showed that simulated chemical shifts, J-coupling, and Rg distribution with the ff03CMAP force field were in better agreement with NMR measurements and were more accurate than those with the ff03 force field. The sampling conformations by ff03CMAP were more diverse than those of ff03. At the same time, ff03CMAP could stabilize the conformers of the ordered proteins. These findings indicate that ff03CMAP can be widely used to sample diverse conformers for proteins, including the intrinsically disordered regions.
Collapse
Affiliation(s)
- Yuxin Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Center for Bioinformation Technology, 200240, Shanghai, China
| |
Collapse
|
6
|
Cui X, Liu H, Chen HF. Polarizable Force Field of Intrinsically Disordered Proteins with CMAP and Reweighting Optimization. J Chem Inf Model 2022; 62:4970-4982. [PMID: 36178373 DOI: 10.1021/acs.jcim.2c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) are highly structurally heterogeneous without a specific tertiary structure under physiology conditions and play key roles in the development of human diseases. Due to the characteristics of diverse conformations, as one of the important methods, molecular dynamics simulation can complement information for experimental methods. Because of the enrichment for charged amino acids for IDPs, polarizable force fields should be a good choice for the simulation of IDPs. However, current polarizable force fields are limited in sampling conformer features of IDPs. Therefore, a polarizable force field was released and named Drude2019IDP based on Drude2019 with reweighting and grid-based potential energy correction map optimization. In order to evaluate the performance of Drude2019IDP, 16 dipeptides, 18 short peptides, 3 representative IDPs, and 5 structural proteins were simulated. The results show that the NMR observables driven by Drude2019IDP are in better agreement with the experiment data than those by Drude2019 on short peptides and IDPs. Drude2019IDP can sample more diverse conformations than Drude2019. Furthermore, the performances of the two force fields are similar to the sample ordered proteins. These results confirm that the developed Drude2019IDP can improve the reproduction of conformers for intrinsically disordered proteins and can be used to gain insight into the paradigm of sequence-disorder for IDPs.
Collapse
Affiliation(s)
- Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hao Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China.,Shanghai Center for Bioinformation Technology, Shanghai200235, China
| |
Collapse
|
7
|
Chen J, Liu H, Cui X, Li Z, Chen HF. RNA-Specific Force Field Optimization with CMAP and Reweighting. J Chem Inf Model 2022; 62:372-385. [PMID: 35021622 DOI: 10.1021/acs.jcim.1c01148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA plays a key role in a variety of cell activities. However, it is difficult to capture its structure dynamics by the traditional experimental methods because of the inherent limitations. Molecular dynamics simulation has become a valuable complement to the experimental methods. Previous studies have indicated that the current force fields cannot accurately reproduce the conformations and structural dynamics of RNA. Therefore, an RNA-specific force field was developed to improve the conformation sampling of RNA. The distribution of ζ/α dihedrals of tetranucleotides was optimized by a reweighting method, and the grid-based energy correction map (CMAP) term was first introduced into the Amber RNA force field of ff99bsc0χOL3, named ff99OL3_CMAP1. Extensive validations of tetranucleotides and tetraloops show that ff99OL3_CMAP1 can significantly decrease the population of an incorrect structure, increase the consistency between the simulation results and experimental values for tetranucleotides, and improve the stability of tetraloops. ff99OL3_CMAP1 can also precisely reproduce the conformation of a duplex and riboswitches. These findings confirm that the newly developed force field ff99OL3_CMAP1 can improve the conformer sampling of RNA.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Hao Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China.,Shanghai Center for Bioinformation Technology, 200240 Shanghai, China
| |
Collapse
|
8
|
Mu J, Pan Z, Chen HF. Balanced Solvent Model for Intrinsically Disordered and Ordered Proteins. J Chem Inf Model 2021; 61:5141-5151. [PMID: 34546059 DOI: 10.1021/acs.jcim.1c00407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) have no fixed three-dimensional (3D) structures under physiological conditions, with the content being about 51% in human proteomics. IDPs are associated with many human diseases, such as cancer, diabetes, and neurodegenerative diseases. Because IDPs do not crystallize and have diverse conformers, traditional experimental methods such as crystallization and NMR can hardly capture their conformation ensemble and just provide average structural characters of IDPs. Therefore, molecular dynamics (MD) simulations become a valuable complement to the experimental data. However, the accuracy of molecular dynamics simulation for IDPs depends on the combination of force fields and solvent models. Recently, we released an environment-specific force field (ESFF1) for IDPs, which can well reproduce the local structural properties (such as J-coupling and secondary chemical shifts). However, there is still a large deviation for the radius of gyration (Rg). Therefore, a solvent model combined with ESFF1 is necessary to capture the local and global characters for IDPs and ordered proteins. Here, we investigated the underestimation or overestimation of the solvent interaction for four solvent models (TIP3P, TIP4P-Ew, TIP4P-D, OPC) under ESFF1 and found the important ε parameter of the solvent model to play a key role in scaling Rg. A near-linear relationship between the simulation Rg and the ε parameter was used to develop the new solvent model, named TIP4P-B. The results indicate that the simulated Rg with TIP4P-B is in better agreement with the experimental observations than the other four solvent models. Simultaneously, TIP4P-B can also maintain the advantages of the ESFF1 force field for the local structural properties. Additionally, TIP4P-B can successfully sample the conformation of ordered proteins. These findings confirm that TIP4P-B is a balanced solvent model and can improve sampling Rg performance for folded proteins and IDPs.
Collapse
Affiliation(s)
- Junxi Mu
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengsong Pan
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,MD Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| |
Collapse
|