1
|
Hengge E, Steyskal EM, Dennig A, Nachtnebel M, Fitzek H, Würschum R, Nidetzky B. Electrochemically Induced Nanoscale Stirring Boosts Functional Immobilization of Flavocytochrome P450 BM3 on Nanoporous Gold Electrodes. SMALL METHODS 2024:e2400844. [PMID: 39300852 DOI: 10.1002/smtd.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/22/2024]
Abstract
Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.
Collapse
Affiliation(s)
- Elisabeth Hengge
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Manfred Nachtnebel
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Harald Fitzek
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, Graz, 8010, Austria
| |
Collapse
|
2
|
Zhang Y, Kong X, Guo HY, Wang J, Yin ZZ. A mesothelin microsensor based on an embedded thionine electronic medium within an imprinted polymer on an acupuncture needle electrode. Analyst 2024; 149:3309-3316. [PMID: 38699925 DOI: 10.1039/d4an00490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An electrochemical microsensor for mesothelin (MSLN) based on an acupuncture needle (AN) was constructed in this work. To prepare the microsensor, MSLN was self-assembled on 4-mercaptophenylboronic acid (4-MPBA) by an interaction force between the external cis-diol and phenylboronic acid. This was followed by the gradual electropolymerization of thionine (TH) and eriochrome black T (EBT) around the anchored protein. The thickness of the surface imprinted layers influenced the sensing performance and needed to be smaller than the height of the anchored protein. The polymerized EBT was not electrically active, but the polymerized TH provided a significant electrochemical signal. Therefore, electron transfer smoothly proceeded through the eluted nanocavities. The imprinted nanocavities were highly selective toward MSLN, and the rebinding of insulating proteins reduced the electrochemical signal of the embedded pTH. The functionalized interface was characterized by SEM and electrochemical methods, and the preparation conditions were studied. After optimization, the sensor showed a linear response in the range of 0.1 to 1000 ng mL-1 with a detection limit of 10 pg mL-1, indicating good performance compared with other reported methods. This microsensor also showed high sensitivity and stability, which can be attributed to the fine complementation of the imprinted organic nanocavities. The sensitivity of this sensor was related to the nanocavities used for electron transport around the AuNPs. In the future, microsensors that can directly provide electrochemical signals are expected to play important roles especially on AN matrices.
Collapse
Affiliation(s)
- Yi Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001. China
| | - Xue Kong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Hai-Yang Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001. China
| |
Collapse
|
3
|
Novak LM, Steyskal EM. Electrochemical detection of fluoride ions in water with nanoporous gold modified by a boronic acid terminated self-assembled monolayer. RSC Adv 2023; 13:6947-6953. [PMID: 36865575 PMCID: PMC9973417 DOI: 10.1039/d2ra07688h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Nanoporous gold (npAu) is a perfectly suited platform for the electrochemical detection of minor amounts of chemical species in solution due to its high surface-to-volume ratio. By surface-modification of the self-standing structure with a self-assembled monolayer (SAM) of 4-mercaptophenylboronic acid (MPBA) it was possible to create an electrode very sensitive towards fluoride ions in water, also suitable for mobile use in future sensing applications. The proposed detection strategy is based on the change in the charge state of the boronic acid functional groups of the monolayer, induced by fluoride binding. The surface potential of the modified npAu sample reacts fast and sensitively to stepwise F- addition, showing highly reproducible, well-defined potential steps with a detection limit of 0.2 mM. Deeper insight into the reaction of fluoride binding on the MPBA modified surface was gained by electrochemical impedance spectroscopy. The proposed fluoride sensitive electrode exhibits a favorable regenerability in alkaline media, which is of central importance for future applications considering environmental as well as economical aspects.
Collapse
Affiliation(s)
- Lara Marie Novak
- Institute of Material Physics, Graz University of Technology, NAWI Graz Petersgasse 16 8010 Graz Austria
| | - Eva-Maria Steyskal
- Institute of Material Physics, Graz University of Technology, NAWI Graz Petersgasse 16 8010 Graz Austria
| |
Collapse
|
4
|
Point-of-Care Testing of Chloramphenicol in Food Production Using Smartphone-Based Electrochemical Detector. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Xia Y, Ni W, Wang X, Wang Y, Huang X. Intermolecular hydrogen bonds between catechin and theanine in tea: slow release of the antioxidant capacity by a synergetic effect. RSC Adv 2022; 12:21135-21144. [PMID: 35975090 PMCID: PMC9341424 DOI: 10.1039/d2ra03692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The health benefits of drinking tea stem from it being rich in polyphenols and other physiologically-active substances. Thus, exploring the synergistic effect between polyphenols and a variety of physiologically-active substances can contribute to our understanding of how tea benefits health. In this work, we have studied the interactions between catechin and theanine, exploring the synergetic antioxidant mechanism of the two molecules. Electrochemical characterization results showed that the oxidation peak current of catechin decreased gradually with the concentration of theanine, which is due to theanine spontaneously binding to catechin through intermolecular hydrogen bonds and forming molecular clusters via two hydrogen bonds. The binding constant is 4.75 at room temperature. The molecular clusters reduce the diffusion coefficient of catechin in solution, leading to the slow release of its antioxidant capacity (ability to effectively inhibit free radical oxidation reactions). Density functional theory calculations were also performed and verified the binding behavior. In identifying the synergistic effect between catechin and theanine on the antioxidant capacity of tea, this study adds to our understanding of the efficacy of tea polyphenols.
Collapse
Affiliation(s)
- Yirong Xia
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Wei Ni
- Beijing Aerospace Propulsion Institute Beijing 100076 China
| | - Xintong Wang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Yanyan Wang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Ximing Huang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| |
Collapse
|
6
|
Xia Y, Wang X, Sun H, Huang X. Proton-coupled electron transfer of catechin in tea wine: the enhanced mechanism of anti-oxidative capacity. RSC Adv 2021; 11:39985-39993. [PMID: 35494161 PMCID: PMC9044537 DOI: 10.1039/d1ra07769d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Tea wine is a Chinese traditional alcoholic drink made by cereal and tea leaves. It is rich in tea polyphenols, caffeine, amino acids, and protons and possesses various healthcare functions. In this work, electrochemical methods, as well as density functional theory (DFT) calculations, were adopted to reveal the proton-coupled electron-transfer process of catechin in tea wine. The electrochemical results showed that the catechin preferred hydrogen-bonding with ethanol and formed molecular clusters. Thus, the direct electron-transfer process of catechin changed to proton-coupled electron transfer. This procedure reduced the energy barrier of the redox reaction and enhanced the anti-oxidative capacity. Subsequently, DFT calculations were employed to explore the bond length, bond energy, and HOMO-LUMO energy gap of catechin, which confirmed the above-mentioned mechanism. Our work offers some positive value for the scientific promotion of traditional food and a greater understanding of the health mechanisms in terms of chemistry.
Collapse
Affiliation(s)
- Yirong Xia
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Xintong Wang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Hechen Sun
- Shanxian Central Hospital Heze 274300 China
| | - Ximing Huang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| |
Collapse
|