1
|
Hudson RJ, MacDonald TSC, Cole JH, Schmidt TW, Smith TA, McCamey DR. A framework for multiexcitonic logic. Nat Rev Chem 2024:10.1038/s41570-023-00566-y. [PMID: 38273177 DOI: 10.1038/s41570-023-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/27/2024]
Abstract
Exciton science sits at the intersection of chemical, optical and spin-based implementations of information processing, but using excitons to conduct logical operations remains relatively unexplored. Excitons encoding information could be read optically (photoexcitation-photoemission) or electrically (charge recombination-separation), travel through materials via exciton energy transfer, and interact with one another in stimuli-responsive molecular excitonic devices. Excitonic logic offers the potential to mediate electrical, optical and chemical information. Additionally, high-spin triplet and quintet (multi)excitons offer access to well defined spin states of relevance to magnetic field effects, classical spintronics and spin-based quantum information science. In this Roadmap, we propose a framework for developing excitonic computing based on singlet fission (SF) and triplet-triplet annihilation (TTA). Various molecular components capable of modulating SF/TTA for logical operations are suggested, including molecular photo-switching and multi-colour photoexcitation. We then outline a pathway for constructing excitonic logic devices, considering aspects of circuit assembly, logical operation synchronization, and exciton transport and amplification. Promising future directions and challenges are identified, and the potential for realizing excitonic computing in the near future is discussed.
Collapse
Affiliation(s)
- Rohan J Hudson
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Exciton Science
| | - Thomas S C MacDonald
- Australian Research Council Centre of Excellence in Exciton Science
- School of Physics, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jared H Cole
- Australian Research Council Centre of Excellence in Exciton Science
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Timothy W Schmidt
- Australian Research Council Centre of Excellence in Exciton Science
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Trevor A Smith
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Exciton Science
| | - Dane R McCamey
- Australian Research Council Centre of Excellence in Exciton Science, .
- School of Physics, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Wright N, Huff JS, Barclay MS, Wilson CK, Barcenas G, Duncan KM, Ketteridge M, Obukhova OM, Krivoshey AI, Tatarets AL, Terpetschnig EA, Dean JC, Knowlton WB, Yurke B, Li L, Mass OA, Davis PH, Lee J, Turner DB, Pensack RD. Intramolecular Charge Transfer and Ultrafast Nonradiative Decay in DNA-Tethered Asymmetric Nitro- and Dimethylamino-Substituted Squaraines. J Phys Chem A 2023; 127:1141-1157. [PMID: 36705555 PMCID: PMC9923757 DOI: 10.1021/acs.jpca.2c06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized. The dyes were covalently tethered to DNA Holliday junctions to suppress aggregation and permit characterization of their monomer photophysics. A combination of density functional theory and steady-state absorption spectroscopy shows that the difference static dipole moment (Δd) successively increases with the addition of these substituents while simultaneously maintaining a large transition dipole moment (μ). Steady-state fluorescence and time-resolved absorption and fluorescence spectroscopies uncover a significant nonradiative decay pathway in the asymmetrically substituted dyes that drastically reduces their excited-state lifetime (τ). This work indicates that Δd can indeed be increased by functionalizing dyes with electron donating and withdrawing substituents and that, in certain classes of dyes such as these asymmetric squaraines, strategies may be needed to ensure long τ, e.g., by rigidifying the π-conjugated network.
Collapse
Affiliation(s)
- Nicholas
D. Wright
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Jonathan S. Huff
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S. Barclay
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - German Barcenas
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Katelyn M. Duncan
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Maia Ketteridge
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Olena M. Obukhova
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Alexander I. Krivoshey
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Anatoliy L. Tatarets
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | | | - Jacob C. Dean
- Department
of Physical Science, Southern Utah University, Cedar City, Utah 84720, United States
| | - William B. Knowlton
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Lan Li
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,Center
for
Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Olga A. Mass
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,Center
for
Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Jeunghoon Lee
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B. Turner
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Ryan D. Pensack
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,
| |
Collapse
|