1
|
Yoshikawa K, Kanno M, Xue H, Kishimoto N, Goto S, Ota F, Tamura Y, Trinter F, Fehre K, Kaiser L, Stindl J, Tsitsonis D, Schöffler M, Dörner R, Boll R, Erk B, Mazza T, Mullins T, Rivas DE, Schmidt P, Usenko S, Meyer M, Wang E, Rolles D, Rudenko A, Kukk E, Jahnke T, Díaz-Tendero S, Martín F, Hatada K, Ueda K. Time-resolved photoelectron diffraction imaging of methanol photodissociation involving molecular hydrogen ejection. Phys Chem Chem Phys 2024; 26:25118-25130. [PMID: 39311030 DOI: 10.1039/d4cp01015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Imaging ultrafast atomic and molecular hydrogen motion with femtosecond time resolution is a challenge for ultrafast spectroscopy due to the low mass and small scattering cross section of the moving neutral hydrogen atoms and molecules. Here, we propose time- and momentum-resolved photoelectron diffraction (TMR-PED) as a way to overcome limitations of existing methodologies and illustrate its performance using a prototype molecular dissociation process involving the sequential ejection of a neutral hydrogen molecule and a proton from the methanol dication. By combining state-of-the-art molecular dynamics and electron-scattering methods, we show that TMR-PED allows for direct imaging of hydrogen atoms in action. More specifically, the fingerprint of hydrogen dynamics reflects the time evolution of polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) as would be recorded in X-ray pump/X-ray probe experiments with few-femtosecond resolution. We present the results of two precursor experiments that support the feasibility of this approach.
Collapse
Affiliation(s)
- Kazuki Yoshikawa
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Manabu Kanno
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Hao Xue
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Naoki Kishimoto
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Soki Goto
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Fukiko Ota
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Yoshiaki Tamura
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Florian Trinter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Kilian Fehre
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Leon Kaiser
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Jonathan Stindl
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Dimitrios Tsitsonis
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Markus Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Benjamin Erk
- FLASH, DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - Sergey Usenko
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Enliang Wang
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Till Jahnke
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, Spain.
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Keisuke Hatada
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Kiyoshi Ueda
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Kuraoka T, Goto S, Kanno M, Díaz-Tendero S, Reino-González J, Trinter F, Pier A, Sommerlad L, Melzer N, McGinnis OD, Kruse J, Wenzel T, Jahnke T, Xue H, Kishimoto N, Yoshikawa K, Tamura Y, Ota F, Hatada K, Ueda K, Martín F. Tracing Photoinduced Hydrogen Migration in Alcohol Dications from Time-Resolved Molecular-Frame Photoelectron Angular Distributions. J Phys Chem A 2024; 128:1241-1249. [PMID: 38324399 PMCID: PMC10895665 DOI: 10.1021/acs.jpca.3c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space. Although visualization of this dynamics is more straightforward in the smaller systems, methanol and ethanol, one can still recognize the signature of that motion in propanol and isopropyl alcohol and assign a tentative path to it. A possible pathway for a corresponding experiment requires an angularly resolved detection of photoelectrons in coincidence with molecular fragment ions used to define a molecular frame of reference. Such studies have become, in principle, possible since the first XFELs with sufficiently high repetition rates have emerged. To further support our findings, we provide experimental evidence of H migration in ethanol-OD from ion-ion coincidence measurements performed with synchrotron radiation.
Collapse
Affiliation(s)
- T. Kuraoka
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - S. Goto
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - M. Kanno
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - S. Díaz-Tendero
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - J. Reino-González
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| | - F. Trinter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - A. Pier
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - L. Sommerlad
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - N. Melzer
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - O. D. McGinnis
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - J. Kruse
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Wenzel
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Jahnke
- Max-Planck-Institut
für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- European
XFEL, Holzkoppel
4, Schenefeld 22869, Germany
| | - H. Xue
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - N. Kishimoto
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - K. Yoshikawa
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Y. Tamura
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Ota
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Hatada
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Ueda
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - F. Martín
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
3
|
Severt T, Weckwerth E, Kaderiya B, Feizollah P, Jochim B, Borne K, Ziaee F, P KR, Carnes KD, Dantus M, Rolles D, Rudenko A, Wells E, Ben-Itzhak I. Initial-site characterization of hydrogen migration following strong-field double-ionization of ethanol. Nat Commun 2024; 15:74. [PMID: 38168047 PMCID: PMC10761976 DOI: 10.1038/s41467-023-44311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
An essential problem in photochemistry is understanding the coupling of electronic and nuclear dynamics in molecules, which manifests in processes such as hydrogen migration. Measurements of hydrogen migration in molecules that have more than two equivalent hydrogen sites, however, produce data that is difficult to compare with calculations because the initial hydrogen site is unknown. We demonstrate that coincidence ion-imaging measurements of a few deuterium-tagged isotopologues of ethanol can determine the contribution of each initial-site composition to hydrogen-rich fragments following strong-field double ionization. These site-specific probabilities produce benchmarks for calculations and answer outstanding questions about photofragmentation of ethanol dications; e.g., establishing that the central two hydrogen atoms are 15 times more likely to abstract the hydroxyl proton than a methyl-group proton to form H[Formula: see text] and that hydrogen scrambling, involving the exchange of hydrogen between different sites, is important in H2O+ formation. The technique extends to dynamic variables and could, in principle, be applied to larger non-cyclic hydrocarbons.
Collapse
Affiliation(s)
- Travis Severt
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Eleanor Weckwerth
- Department of Physics, Augustana University, Sioux Falls, SD, 57108, USA
| | - Balram Kaderiya
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Peyman Feizollah
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Bethany Jochim
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Kurtis Borne
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Farzaneh Ziaee
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Kanaka Raju P
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
- School of Quantum Technology, DIAT (DU), Pune, Maharashtra, 411025, India
| | - Kevin D Carnes
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Eric Wells
- Department of Physics, Augustana University, Sioux Falls, SD, 57108, USA.
| | - Itzik Ben-Itzhak
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
4
|
Abid A, Veteläinen O, Boudjemia N, Pelimanni E, Kivimäki A, Alatalo M, Huttula M, Björneholm O, Patanen M. Forming Bonds While Breaking Old Ones: Isomer-Dependent Formation of H 3O + from Aminobenzoic Acid During X-ray-Induced Fragmentation. J Phys Chem A 2023; 127:1395-1401. [PMID: 36749682 PMCID: PMC9940210 DOI: 10.1021/acs.jpca.2c06869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intramolecular hydrogen transfer, a reaction where donor and acceptor sites of a hydrogen atom are part of the same molecule, is a ubiquitous reaction in biochemistry and organic synthesis. In this work, we report hydronium ion (H3O+) production from aminobenzoic acid (ABA) after core-level ionization with soft X-ray synchrotron radiation. The formation of H3O+ during the fragmentation requires that at least two hydrogen atoms migrate to one of the oxygen atoms within the molecule. The comparison of two structural isomers, ortho- and meta-ABA, revealed that the production of H3O+ depends strongly on the structure of the molecule, the ortho-isomer being much more prone to produce H3O+. The isomer-dependency suggests that the amine group acts as a donor in the hydrogen transfer process. In the case of ortho-ABA, detailed H3O+ production pathways were investigated using photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy. It was found that H3O+ can result from a direct two-body dissociation but also from sequential fragmentation processes.
Collapse
Affiliation(s)
- Abdul
Rahman Abid
- Nano
and Molecular Systems Research Unit, University
of Oulu, 90570 Oulu, Finland,Molecular
and Condensed Matter Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Onni Veteläinen
- Nano
and Molecular Systems Research Unit, University
of Oulu, 90570 Oulu, Finland
| | - Nacer Boudjemia
- Nano
and Molecular Systems Research Unit, University
of Oulu, 90570 Oulu, Finland
| | - Eetu Pelimanni
- Nano
and Molecular Systems Research Unit, University
of Oulu, 90570 Oulu, Finland
| | - Antti Kivimäki
- Nano
and Molecular Systems Research Unit, University
of Oulu, 90570 Oulu, Finland,MAX
IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Matti Alatalo
- Nano
and Molecular Systems Research Unit, University
of Oulu, 90570 Oulu, Finland
| | - Marko Huttula
- Nano
and Molecular Systems Research Unit, University
of Oulu, 90570 Oulu, Finland
| | - Olle Björneholm
- Molecular
and Condensed Matter Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Minna Patanen
- Nano
and Molecular Systems Research Unit, University
of Oulu, 90570 Oulu, Finland,
| |
Collapse
|
5
|
Hydrogen migration in inner-shell ionized halogenated cyclic hydrocarbons. Sci Rep 2023; 13:2107. [PMID: 36747068 PMCID: PMC9902455 DOI: 10.1038/s41598-023-28694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3d) and C(1s) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH3+ fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CHx+ fragments (with x = 0, …, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations.
Collapse
|
6
|
Das R, Pandey DK, Soumyashree S, P M, Nimma V, Bhardwaj P, K M MS, Singh DK, Kushawaha RK. Strong-field ionization of CH 3Cl: proton migration and association. Phys Chem Chem Phys 2022; 24:18306-18320. [PMID: 35880610 DOI: 10.1039/d2cp02494b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong-field ionization of CH3Cl using femtosecond laser pulses, and the subsequent two-body dissociation of CH3Cl2+ along Hn+ (n = 1-3) and HCl+ forming pathways, have been experimentally studied in a home-built COLTRIMS (cold target recoil ion momentum spectrometer) setup. The single ionization rate of CH3Cl was obtained experimentally by varying the laser intensity from 1.6 × 1013 W cm-2 to 2.4 × 1014 W cm-2 and fitted with the rate obtained using the MO-ADK model. Additionally, the yield of Hn+ ions resulting from the dissociation of all charge states of CH3Cl was determined as a function of intensity and pulse duration (and chirp). Next, we identified four two-body breakup pathways of CH3Cl2+, which are H+ + CH2Cl+, H2+ + CHCl+, H3+ + CCl+, and CH2+ + HCl+, using photoion-photoion coincidence. The yields of the four pathways were found to decrease on increasing the intensity from I = 4.2 × 1013 W cm-2 to 2I = 8.5 × 1013 W cm-2, which was attributed to enhanced ionization of the dication before it can dissociate. As a function of pulse duration (and chirp), the Hn+ forming pathways were suppressed, while the HCl+ forming pathway was enhanced. To understand the excited state dynamics of the CH3Cl dication, which controls the outcome of dissociation, we obtained the total kinetic energy release distributions of the pathways and the two-dimensional coincidence momentum images and angular distributions of the fragments. We inferred that the Hn+ forming pathways originate from the dissociation of CH3Cl dications from weakly attractive metastable excited states having a long dissociation time, while for the HCl+ forming pathway, the dication dissociates from repulsive states and therefore, undergoes rapid dissociation. Finally, quantum chemical calculations have been performed to understand the intramolecular proton migration and dissociation of the CH3Cl dication along the pathways mentioned above. Our study explains the mechanism of Hn+ and HCl+ formation and confirms that intensity and pulse duration can serve as parameters to influence the excited state dynamics and hence, the outcome of the two-body dissociation of CH3Cl2+.
Collapse
Affiliation(s)
- Rituparna Das
- Physical Research Laboratory Ahmedabad, Gujarat 380009, India.
| | - Deepak K Pandey
- Department of Basic Sciences, Institute of Infrastructure Technology Research And Management, Ahmedabad-380026, India.
| | | | - Madhusudhan P
- Physical Research Laboratory Ahmedabad, Gujarat 380009, India.
| | - Vinitha Nimma
- Physical Research Laboratory Ahmedabad, Gujarat 380009, India.
| | - Pranav Bhardwaj
- Physical Research Laboratory Ahmedabad, Gujarat 380009, India.
| | | | - Dheeraj K Singh
- Department of Basic Sciences, Institute of Infrastructure Technology Research And Management, Ahmedabad-380026, India.
| | | |
Collapse
|
7
|
González-Collado CM, Plésiat E, Decleva P, Palacios A, Martín F. Vibrationally resolved photoelectron angular distributions of ammonia. Phys Chem Chem Phys 2022; 24:7700-7712. [PMID: 35293411 DOI: 10.1039/d2cp00627h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a theoretical study of vibrationally resolved photoelectron angular distributions for ammonia in both laboratory and molecular frames, in the photon energy range up to 70 eV, where only valence and inner-valence ionization is possible. We focus on the band resulting from ionization of the 3a1 HOMO orbital leading to NH3+ in the electronic ground state, , for which the dominant vibrational progression corresponds to the activation of the umbrella inversion mode. We show that, at room temperature, the photoelectron angular distributions for randomly oriented molecules or molecules whose principal C3 symmetry axis is aligned along the light polarization direction are perfectly symmetric with respect to the plane that contains the intermediate D3h conformation connecting the pyramidal structures associated with the double-well potential of the umbrella inversion mode. These distributions exhibit symmetric, nearly perfect two-lobe shapes in the whole range of investigated photon energies. In contrast, for molecules where the initial vibrational state is localized in one of the two wells, a situation that can experimentally be achieved by introducing an external electric field, the molecular-frame photoelectron angular distributions (MFPADs) are in general asymmetric, but the degree of asymmetry of the two lobes dramatically changes and oscillates with photoelectron energy. We also show that, at ultracold temperatures, where all aligned molecules initially lie in the delocalized ground vibrational state, the photoelectron angular distributions are perfectly symmetric, but the two-lobe shape is only observed when the final vibrational state of the resulting NH3+ cation has even parity. When the latter vibrational state has odd parity, the angular distributions are much more involved and, at photoelectron energies of ∼10 eV, they directly reflect the bi-pyramidal geometry of the molecule in its ground vibrational state. These results suggest that, in order to obtain structural information from MFPADs in ammonia and likely in other molecules containing a similar double-well potential, one could preferably work at ultracold temperatures, which is not the case for most molecules.
Collapse
Affiliation(s)
| | - Etienne Plésiat
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
| | - Piero Decleva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste and CNR-IOM, 34127 Trieste, Italy
| | - Alicia Palacios
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Institute of Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
8
|
Dowek D, Decleva P. Trends in angle-resolved molecular photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:24614-24654. [DOI: 10.1039/d2cp02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this perspective article, main trends of angle-resolved molecular photoelectron spectroscopy in the laboratory up to the molecular frame, in different regimes of light-matter interactions, are highlighted with emphasis on foundations and most recent applications.
Collapse
Affiliation(s)
- Danielle Dowek
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Piero Decleva
- CNR IOM and Dipartimento DSCF, Università di Trieste, Trieste, Italy
| |
Collapse
|