• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643723)   Today's Articles (453)   Subscriber (50634)
For: Wan Z, Wang QD, Liu D, Liang J. Data-driven machine learning model for the prediction of oxygen vacancy formation energy of metal oxide materials. Phys Chem Chem Phys 2021;23:15675-15684. [PMID: 34269780 DOI: 10.1039/d1cp02066h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Number Cited by Other Article(s)
1
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024;53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
2
Witman MD, Goyal A, Ogitsu T, McDaniel AH, Lany S. Defect graph neural networks for materials discovery in high-temperature clean-energy applications. NATURE COMPUTATIONAL SCIENCE 2023;3:675-686. [PMID: 38177319 DOI: 10.1038/s43588-023-00495-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/05/2023] [Indexed: 01/06/2024]
3
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
4
Mannodi-Kanakkithodi A, Xiang X, Jacoby L, Biegaj R, Dunham ST, Gamelin DR, Chan MKY. Universal machine learning framework for defect predictions in zinc blende semiconductors. PATTERNS (NEW YORK, N.Y.) 2022;3:100450. [PMID: 35510195 PMCID: PMC9058924 DOI: 10.1016/j.patter.2022.100450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
5
Wan Z, Wang QD. Machine Learning Prediction of the Exfoliation Energies of Two-Dimension Materials via Data-Driven Approach. J Phys Chem Lett 2021;12:11470-11475. [PMID: 34793172 DOI: 10.1021/acs.jpclett.1c03335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA