1
|
Vang ZP, Sonstrom RE, Scolati HN, Clark JR, Pate BH. Assignment of the absolute configuration of molecules that are chiral by virtue of deuterium substitution using chiral tag molecular rotational resonance spectroscopy. Chirality 2023; 35:856-883. [PMID: 37277968 PMCID: PMC11102577 DOI: 10.1002/chir.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Chiral tag molecular rotational resonance (MRR) spectroscopy is used to assign the absolute configuration of molecules that are chiral by virtue of deuterium substitution. Interest in the improved performance of deuterated active pharmaceutical ingredients has led to the development of precision deuteration reactions. These reactions often generate enantioisotopomer reaction products that pose challenges for chiral analysis. Chiral tag rotational spectroscopy uses noncovalent derivatization of the enantioisotopomer to create the diastereomers of the 1:1 molecular complexes of the analyte and a small, chiral molecule. Assignment of the absolute configuration requires high-confidence determinations of the structures of these weakly bound complexes. A general search method, CREST, is used to identify candidate geometries. Subsequent geometry optimization using dispersion corrected density functional theory gives equilibrium geometries with sufficient accuracy to identify the isomers of the chiral tag complexes produced in the pulsed jet expansion used to introduce the sample into the MRR spectrometer. Rotational constant scaling based on the fact that the diastereomers have the same equilibrium geometry gives accurate predictions allowing identification of the homochiral and heterochiral tag complexes and, therefore, assignment of absolute configuration. The method is successfully applied to three oxygenated substrates from enantioselective Cu-catalyzed alkene transfer hydrodeuteration reaction chemistry.
Collapse
Affiliation(s)
- Zoua Pa Vang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Reilly E. Sonstrom
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- BrightSpec Inc, Charlottesville, Virginia, USA
| | - Haley N. Scolati
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph R. Clark
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Brooks H. Pate
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Hazrah AS, Insausti A, Ma J, Al-Jabiri MH, Jäger W, Xu Y. Wetting vs Droplet Aggregation: A Broadband Rotational Spectroscopic Study of 3-Methylcatechol⋅⋅⋅Water Clusters. Angew Chem Int Ed Engl 2023; 62:e202310610. [PMID: 37697450 DOI: 10.1002/anie.202310610] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Two competing solvation pathways of 3-methylcatechol (MC), an atmospherically relevant aromatic molecule, with up to five water molecules were explored in detail by using a combination of broadband rotational spectroscopy and computational chemistry. Theoretically, two different pathways of solvation emerge: the commonly observed droplet pathway which involves preferential binding among the water molecules while the solute serves as an anchor point for the formation of a water cluster, and an unexpected wetting pathway which involves interactions between the water molecules and the aromatic face of MC, i.e., a wetting of the π-surface. Conclusive identification of the MC hydrate structures, and therefore the wetting pathway, was facilitated by rotational spectra of the parent MC hydrates and several H2 18 O and 13 C isotopologues which exhibit splittings associated with methyl internal rotation and/or water tunneling motions. Theoretical modelling and analyses offer insights into the tunneling and conversion barriers associated with the observed hydrate conformers and the nature of the non-covalent interactions involved in choosing the unusual wetting pathway.
Collapse
Affiliation(s)
- Arsh S Hazrah
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Current Address: Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Aran Insausti
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV-EHU), 48080, Bilbao, Spain
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jiarui Ma
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mohamad H Al-Jabiri
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
3
|
Lin C, Zhou X, Zhang H, Fu Z, Yang H, Zhang M, Hu P. Deciphering and investigating fragment mechanism of quinolones using multi-collision energy mass spectrometry and computational chemistry strategy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9514. [PMID: 37012644 DOI: 10.1002/rcm.9514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
RATIONALE Quinolones show characteristic fragments in mass spectrometry (MS) analysis due to their common core structures, and energy-dependent differences among these fragments are generated through the same fragmentation pathway of different molecules. Computational chemistry, which provides quantitative results of molecule parameters, is helpful for investigating the mechanisms of chemistry. METHODS MS/MS spectra of five quinolones, namely norfloxacin (NOR), enoxacin (ENO), enrofloxacin (ENR), gatifloxacin (GAT), and lomefloxacin (LOM), were acquired for deciphering fragmentation pathways under multi-collision energy (CE). Computational methods were used for excluding little possibility pathways from the point of view of energy and stable conformations, whereas optimized collision energy (OCE) and maximum relative intensity (MRI) of major competitive fragments were investigated and confirmed using computational results. RESULTS Fragmentation results of NOR, ENO, ENR, and GAT were deciphered using experimental and computational data, of which fragmentation regularities were summarized. Fragmentation pathways of LOM were deciphered under the guidance of foregoing regularities. Meanwhile, the whole process was validated by comparing OCE and MRI and computational energy results, which showed good agreement. CONCLUSIONS A strategy for explaining quinolone fragmentation results of multi-CE values and deciphering fragment mechanism using computational methods was developed. Relevant data and strategy may provide ideas for how to design and decipher new drug molecules with similar structures.
Collapse
Affiliation(s)
- Chuhui Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong road No.130, Shanghai, China
| | - Xudong Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong road No.130, Shanghai, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong road No.130, Shanghai, China
| | - Zhibo Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong road No.130, Shanghai, China
| | - Haoyu Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong road No.130, Shanghai, China
| | - Min Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Department of pharmaceutical engineering, School of Pharmacy, East China University of Science and Technology, Meilong road No.130, Shanghai, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong road No.130, Shanghai, China
| |
Collapse
|
4
|
Mears KL, Kutzleb MA, Stennett CR, Fettinger JC, Kaseman DC, Yu P, Vasko P, Power PP. Terpene dispersion energy donor ligands in borane complexes. Chem Commun (Camb) 2022; 58:9910-9913. [PMID: 35979664 DOI: 10.1039/d2cc04203g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural characterization of the complex [B(β-pinane)3] (1) reveals non-covalent H⋯H contacts that are consistent with the generation of London dispersion energies involving the β-pinane ligand frameworks. The homolytic fragmentations of 1, and camphane and sabinane analogues ([B(camphane)3] (2) and [B(sabinane)3] (3)) were studied computationally. Isodesmic exchange results showed that London dispersion interactions are highly dependent on the terpene's stereochemistry, with the β-pinane framework providing the greatest dispersion free energy (ΔG = -7.9 kcal mol-1) with Grimme's dispersion correction (D3BJ) employed. PMe3 was used to coordinate to [B(β-pinane)3], giving the complex [Me3P-B(β-pinane)3] (4), which displayed a dynamic coordination equilibrium in solution. The association process was found to be slightly endergonic at 302 K (ΔG = +0.29 kcal mol-1).
Collapse
Affiliation(s)
- Kristian L Mears
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Michelle A Kutzleb
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Cary R Stennett
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - James C Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Derrick C Kaseman
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Ping Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, PO Box 55 (A. I. Virtasen aukio 1), 00014, Finland.
| | - Philip P Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|