1
|
Li Y, Wan Y, Yao J, Zheng H, Wang X, Liu X, Ouyang B, Huang C, Deng K, Kan E. Enhanced electrocatalytic hydrogen evolution from nitrogen plasma-tailored MoS 2 nanostructures. Phys Chem Chem Phys 2023; 25:31628-31635. [PMID: 37982294 DOI: 10.1039/d3cp04951e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Two-dimensional (2D) layered transition metal dichalcogenides such as MoS2 have been viewed as the most favorable candidates for replacing noble metals in catalyzing the hydrogen evolution reaction in water splitting owing to their earth abundance, superb chemical stability, and appropriate Gibbs free energy. However, due to its low number of catalytic sites and basal catalytic inertia, the pristine MoS2 displayed intrinsically unsatisfactory HER catalytic activity. Here, the hydrogen evolution catalytic activities of nanostructured MoS2 powder before and after plasma modification with nitrogen doping were experimentally compared, and the influence of treatment parameters on the hydrogen evolution catalytic performance of MoS2 has been studied. The feasibility of regulating hydrogen evolution catalytic activity by nitrogen doping of MoS2 was verified based on density functional theory calculations. Our work demonstrates a more convenient and faster way to develop cheap and efficient MoS2-based catalysts for electrochemical hydrogen evolution reactions. Additionally, theoretical studies reveal that N-doped MoS2 exhibits strong hybridization between Mo-d and N-p states, causing magnetism to evolve, as confirmed by experiments.
Collapse
Affiliation(s)
- You Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yi Wan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jiamin Yao
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hongqian Zheng
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xi Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xuan Liu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chengxi Huang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Kaiming Deng
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Xu J, Liu Z, Wang Q, Li J, Huang Y, Wang M, Cao L, Yao W, Wu H, Chen C. Facile Tailoring of Surface Terminations of MXenes by Doping Nb Element: Toward Extraordinary Pseudocapacitance Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15367-15376. [PMID: 36924166 DOI: 10.1021/acsami.2c21838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
MXenes show promising potential in supercapacitors due to their unique two-dimensional (2D) structure and abundant surface functional groups. However, most studies about MXenes have focused on tailoring surface structures by alternating synthesis methods or post-etch treatments, and little is known about the inherent relationship between surface groups and M elements. Herein, we propose a simple and novel strategy to adjust the surface structure of few-layered MXene flakes by adding a small amount of Nb element. Because of the strong affinity between Nb and O elements, the as-received V1.8Nb0.2CTx and Ti2.7Nb0.3C2Tx MXenes have much fewer -F functional groups and a higher O content than V2CTx and Ti3C2Tx MXenes, respectively. Thus, both V1.8Nb0.2CTx and Ti2.7Nb0.3C2Tx MXenes show enhanced pseudocapacitance performance. Especially, V1.8Nb0.2CTx delivers an ultrahigh volumetric capacitance of 1698 F/cm3 at a scan rate of 2 mV/s. Moreover, benefiting from the high activity of MAX precursors obtained through a fast self-propagating high-temperature synthesis, the etching time to produce V-based MXenes is much shorter than that in previous reports. Therefore, the results presented here are applicable to the surface engineering and rational design of 2D MXene materials and develop them into promising, cost-effective electrode materials for supercapacitors or other energy-storage equipment.
Collapse
Affiliation(s)
- Jianguang Xu
- School of Materials and Energy, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Zhiyong Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Qiang Wang
- School of Materials and Energy, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Junsheng Li
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Yuxiang Huang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Mengnan Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Linyu Cao
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Wei Yao
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Haijiang Wu
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, P. R. China
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, Hunan, P. R. China
| | - Chi Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, and Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| |
Collapse
|
3
|
Lei D, Gui W, Zhao X, Tian X, Xiao W, Xue J, Wang Y, Peng X. New insight into poor flotation recovery of fine molybdenite: An overlooked phase transition from 2H to 1T MoS2. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Jia X, Wang J, Lu Y, Sun J, Li Y, Wang Y, Zhang J. Designing SnS/MoS 2 van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation. Phys Chem Chem Phys 2022; 24:21321-21330. [PMID: 36043354 DOI: 10.1039/d2cp02692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of direct Z-scheme photocatalytic heterojunctions with an internal electric field has been proposed as an outstanding method to achieve efficient utilization of solar energy for photocatalytic overall water-splitting. In this work, the properties of van der Waals (vdW) heterojunctions formed by group-IV mono-chalcogenides (MXs) (M = Ge, Sn; X = S, Se, Te) and MoS2 are systematically studied by first-principles calculations, including the vdW binding energy, the direction of an internal electric field and the electronic structure. The results predict that GeS/MoS2, GeSe/MoS2 and SnS/MoS2 vdW heterojunctions are potential direct Z-scheme water-splitting photocatalysts with appropriate band alignments, a wide light absorption range and low effective charge-carrier mass. Furthermore, the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) activities of the heterojunctions as photocatalysts are predicted. The results indicate that SnS/MoS2 with the Sn vacancy has a low Gibbs free energy of the HER (0.06 eV), and MoS2 with the S edge can offer OER active sites. This study provides a theoretical basis for the further design and preparation of a new two-dimensional overall water-splitting photocatalyst, which is conducive to the development of efficient two-dimensional photocatalysts in the field of clean energy.
Collapse
Affiliation(s)
- Xiaofang Jia
- School of Physics, Beihang University, Beijing 100191, China.
| | - Jinlong Wang
- School of physics and Electronic Engineering, Xinxiang University, Xinxiang, 453003, China
| | - Yue Lu
- School of Physics, Beihang University, Beijing 100191, China.
| | - Jiaming Sun
- School of Physics, Beihang University, Beijing 100191, China.
| | - Yang Li
- School of Physics, Beihang University, Beijing 100191, China.
| | - Yuyan Wang
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| | - Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China.
| |
Collapse
|
5
|
Jia HL, Guo CL, Chen RX, Zhao J, Liu R, Guan MY. Ruthenium nanoparticles supported on S-doped graphene as an efficient HER electrocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj04765e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient HER catalyst was prepared by doping graphene and wrapping ruthenium nanoparticles, and its performance is comparable to that of commercial Pt/C.
Collapse
Affiliation(s)
- Hai-Lang Jia
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Cheng-Lin Guo
- CMCU Engineering Co., Ltd, Chongqing, 400030, P. R. China
| | - Rui-Xin Chen
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Jiao Zhao
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Rui Liu
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|