1
|
Yasumura S, Nagai K, Miyazaki S, Qian Y, Chen D, Toyao T, Kamiya Y, Shimizu KI. Low-Temperature Methane Combustion Using Ozone over Coβ Catalyst. J Am Chem Soc 2024. [PMID: 39031765 DOI: 10.1021/jacs.4c05967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Catalytic methane (CH4) combustion is a promising approach to reducing the release of unburned methane in exhaust gas. Here, we report Co-exchanged β zeolite (Coβ) as an efficient catalyst for CH4 combustion using O3. A series of ion-exchanged β zeolites (Co, Ni, Mn, Fe, and Pd) are subjected to the catalytic test, and Coβ exhibits a superior performance in a low-temperature region (<100 °C). The results of X-ray absorption spectroscopy (XAS) and catalytic tests for Coβ with different Co loadings indicate the isolated Co species is the plausible active site. The reaction mechanism of CH4 combustion over the isolated Co2+ cation is theoretically investigated by the single-component artificial force-induced reaction (SC-AFIR) method to thoroughly search for possible reaction routes. The resulting path toward CO2 formation shows an activation energy of 73 kJ/mol for the rate-determining step and an exothermicity of 1025 kJ/mol, which supports the experimental results. During a long-term catalytic test for 160 h without external heating, the CH4 conversion gradually decreases from 80 to 40%, but the conversion fully recovers after dehydration at 500 °C (0.5 h). The copresence of H2O and CO exhibits a negative impact on the catalytic activity, while NO and SO2 do not markedly change the catalytic activity.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Ken Nagai
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Shinta Miyazaki
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Duotian Chen
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Yuichi Kamiya
- Faculty of Environmental Earth Science, Hokkaido University, N-5, K-10, Kita-ku, Sapporo 060-0810, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Li D, Ding Q, Hao D, Han J, Yang G, Pang L, Guo Y, Yu J, Li T. Na Cocations and Hydrothermal Aging Cooperatively Boost the Regeneration of Phosphorus-Poisoned Pd/SSZ-13 for Passive NO x Adsorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19956-19964. [PMID: 37948508 DOI: 10.1021/acs.est.3c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pd/SSZ-13 has been proposed as a passive NOx adsorber (PNA) for low-temperature NOx adsorption. However, it remains challenging for Pd/SSZ-13 to work efficiently when suffering from phosphorus poisoning. Herein, we report a simple and efficient strategy to regenerate the phosphorus-poisoned Pd/SSZ-13 based on the cooperation between hydrothermal aging treatment and Na cocations. It was found that hydrothermal aging treatment enabled the redispersion of Pd and P-containing species in phosphorus-poisoned Pd/SSZ-13. Meanwhile, the presence of Na cocations significantly reduced the formation of AlPO4 and retained more paired Al sites for highly dispersed Pd2+ ions, which was of great importance for the recovery of adsorption performance. To our satisfaction, the restoration ratio of the adsorption capacity of poisoned Pd/SSZ-13 was >90% after regeneration. Strikingly, the NOx adsorption activities of phosphorus-poisoned Pd/SSZ-13 with phosphorus loadings of 0.2 and 0.4 mmol g-1 almost completely recovered upon regeneration. This study demonstrates the promoting effect of Na cocations on the regeneration of phosphorus-poisoned Pd/SSZ-13 by hydrothermal aging treatment, which provides useful guidance for the design of PNA materials with excellent durability for cold-start application.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qianzhao Ding
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dapeng Hao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinfeng Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guoju Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lei Pang
- Dongfeng Trucks R&D Center, Wuhan 430056, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Tao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
3
|
Yasumura S, Kato T, Toyao T, Maeno Z, Shimizu KI. An automated reaction route mapping for the reaction of NO and active species on Ag 4 clusters in zeolites. Phys Chem Chem Phys 2023; 25:8524-8531. [PMID: 36883572 DOI: 10.1039/d2cp04761f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A computational investigation of the catalytic reaction on multinuclear sites is very challenging. Here, using an automated reaction route mapping method, the single-component artificial force induced reaction (SC-AFIR) algorithm, the catalytic reaction of NO and OH/OOH species over the Ag42+ cluster in a zeolite is investigated. The results of the reaction route mapping for H2 + O2 reveal that OH and OOH species are formed over the Ag42+ cluster via an activation barrier lower than that of OH formation from H2O dissociation. Then, reaction route mapping is performed to examine the reactivity of the OH and OOH species with NO molecules over the Ag42+ cluster, resulting in the facile reaction path of HONO formation. With the aid of the automated reaction route mapping, the promotion effect of H2 addition on the SCR reaction was computationally proposed (boosting the formation of OH and OOH species). In addition, the present study emphasizes that automated reaction route mapping is a powerful tool to elucidate the complicated reaction pathway on multi-nuclear clusters.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.
| | - Taisetsu Kato
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.
| | - Zen Maeno
- School of Advanced Engineering, Kogakuin University, Tokyo, 192-0015, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.
| |
Collapse
|