1
|
Paul D, Sahoo P, Sengupta A, Tripathy U, Chatterjee S. Revealing the Role of Electronic Effect to Modulate the Photophysics and Z-Scan Responses of o-Locked GFP Chromophores. J Phys Chem B 2024. [PMID: 39480189 DOI: 10.1021/acs.jpcb.4c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Three novel core green fluorescent protein (GFP) chromophore analogues, based on a doubly locked conformation and variable electronic effects by replacing one hydrogen with bromine, iodine, and methyl, respectively, have been synthesized to modulate the push-pull effect. These chromophores exhibited intramolecular H-bonding, as evidenced by single-crystal X-ray and 1H NMR studies. The fluorescence quantum yields (ϕf) of all of the chromophores were found to be more than an order of magnitude higher (∼0.2) than the unlocked chromophores (∼0.01). It was found that the electronic effect did affect the nonradiative rates, as the quantum yields were found to vary with respect to different analogues in the same solvents. The effect of the push-pull effect was also evident by a higher Stokes-shifted emission in the case of the methyl derivative with respect to the bromo- and iodo-analogues. Furthermore, the emission spectra of these GFP chromophores were found to show positive solvatochromism, which was supported by a quantum chemical calculation. A detailed study, correlating the observed spectral changes with various solvent functions and supported by computational results, established a facile proton transfer, followed by twisted intramolecular charge transfer (TICT) to be the major nonradiative channels of these chromophores. Besides, a completely novel usage of these chromophores was explored for the first time by studying their third-order nonlinear optical characteristics in DMSO using a single-beam Z-scan technique. All of the chromophores exhibited tunable nonlinear refraction (NLR) and nonlinear absorption (NLA) properties that depend upon different substituent groups present in the chromophores. Here, the NLR was due to the effect of self-defocusing, whereas the NLA was triggered by reverse saturable absorption, which is attributed to the two-photon absorption (TPA) process. Surprisingly, the efficiency of the TPA ability of the chromophores was found to be a function of the induced electronic effect. Hence, this work opens a new route for the utility of the ortho-locked GFP chromophores in the field of nonlinear optical applications.
Collapse
Affiliation(s)
- Debasish Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Soumit Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| |
Collapse
|
2
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Comparative Vision of Nonlinear Thermo-Optical Features and Third-Order Susceptibility of Mechanically Flexible Metallosupramolecular Self-Repairing Networks with Isomeric Organic Acids. Inorg Chem 2024; 63:12003-12016. [PMID: 38904106 DOI: 10.1021/acs.inorgchem.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Two self-healing-type supramolecular Ni(II)-metallogels are achieved. The choice of proper low-molecular-weight organic gelators such as trans-butenedioic acid (i.e., trans-BDA) and cis-butenedioic acid (i.e., cis-BDA) and triethylamine in N,N'-dimethylformamide solvent facilitates the metallogelation process. Through rheological investigations the mechanical robustness and viscoelastic properties of synthesized metallogels are explored. An in-depth exploration of thixotropic behavior also supports their self-healing features. Notably, distinct variations in morphologies of metallogels are also ascertained through field emission scanning electron microscopy studies. Furthermore, the existence of versatile noncovalent supramolecular interactions operating throughout the metallogel network is clearly revealed via Fourier transform infrared spectroscopy. Electrospray ionization-mass studies also explore the construction protocol of individual Ni(II)-metallogels. The Z-scan measurements with a 532 nm continuous wave laser were employed to unveil the nonlinear thermo-optical response of two synthesized self-healing metallogels, i.e., trans-BDA-TEA@Ni(II) and cis-BDA-TEA@Ni(II). Crucial parameters like the nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels are obtained. Metallogels show negative signs for the nonlinear refractive index and the nonlinear absorption coefficient. The real parts of the third-order susceptibility for these metallogels are much greater than the imaginary parts (i.e., χR(3) > χI(3)), making such metallogels very promising for all optical-switching applications.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Seacom Skills University, Kendradangal, Bolpur, 731236 Birbhum, West Bengal, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Bajkul Milani Mahavidyalaya, Purba Mednipur, West Bengal 721655, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
3
|
Pathak NK, Sahoo P, Tripathy U. Nonlinear study of indolamines: A hidden property that might have possible implications in neurodegeneration. Talanta 2024; 272:125808. [PMID: 38373364 DOI: 10.1016/j.talanta.2024.125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Indolamines (e.g., serotonin and melatonin) are tryptophan-derived class of neurotransmitters and neuromodulators that play crucial roles in mood regulation, sleep-wake cycles, and gastrointestinal functions. These biogenic amines exert their effects by binding to specific receptors in the central nervous system, influencing neuronal activity and signalling cascades. Indolamines are vital in maintaining homeostasis, and imbalances in their levels have been implicated in various neurological and psychiatric disorders. Hence, in the present study, we have investigated the nonlinear properties of indolamines under a continuous wave (CW) and pulsed laser excitation using the closed-aperture (CA) Z-scan technique. The CA Z-scan is a cost-effective and sensitive analytical tool for investigating nonlinear properties. It is observed that indolamines show negative refractive and positive absorptive nonlinearity under in vitro physiological conditions. The origin of nonlinearity is ascribed to the thermo-optical effect governed by the saturated atomic absorption and molecular orientation mechanisms under CW and pulsed laser excitation, respectively. The strength of nonlinearity is found to vary linearly with the concentration of indolamines. Overall, serotonin possesses stronger nonlinearity than melatonin. The maximum nonlinearity (refractive index (n2) & absorption coefficient (β)) for melatonin under CW and pulsed laser excitations are (-1.266 × 10-12 m2W-1 and -1.883 × 10-17 m2W-1) & (8.046 × 10-8 mW-1 and 1.516 × 10-13 mW-1), respectively. Meanwhile, the maximum n2 and β under pulsed laser excitation for serotonin are obtained as -3.195 × 10-17 m2W-1 and 6.149 × 10-12 mW-1, respectively. The outcome of the results may be utilized in understanding processes mediated by indolamines and designing therapeutic interventions.
Collapse
Affiliation(s)
- Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India
| | - Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
4
|
Sahoo P, Pathak NK, Scott Bohle D, Dodd EL, Tripathy U. Hematin anhydride (β-hematin): An analogue to malaria pigment hemozoin possesses nonlinearity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123902. [PMID: 38281463 DOI: 10.1016/j.saa.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Hematin anhydride (β-hematin), the synthetic analogue of the malaria pigment, "hemozoin", is a heme dimer produced by reciprocal covalent bonds among carboxylic acid groups on the protoporphyrin-IX ring and the iron atom present in the two adjacent heme molecules. Hemozoin is a disposal product formed from the digestion of hemoglobin present in the red blood cells infected with hematophagous malaria parasites. Besides, as the parasites invade red blood cells, hemozoin crystals are eventually released into the bloodstream, where they accumulate over time in tissues. Severe malaria infection leads to significant dysfunction in vital organs such as the liver, spleen, and brain in part due to the autoimmune response to the excessive accumulation of hemozoin in these tissues. Also, the amount of these crystals in the vasculature correlates with disease progression. Thus, hemozoin is a unique indicator of infection used as a malaria biomarker and hence, used as a target for the development of antimalarial drugs. Hence, exploring various properties of hemozoin is extremely useful in the direction of diagnosis and cure. The present study focuses on finding one of the unknown properties of β-hematin in physiological conditions by using the Z-scan technique, which is simple, sensitive, and economical. It is observed that hemozoin possesses one of the unique material properties, i.e., nonlinearity with a detection limit of ∼ 15 µM. The self-defocusing action causes β-hematin to exhibit negative refractive nonlinearity. The observed data is analyzed with a thermal lensing model. We strongly believe that our simple and reliable approach to probing the nonlinearity of β-hematin will provide fresh opportunities for malaria diagnostics & cure in the near future.
Collapse
Affiliation(s)
- Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - D Scott Bohle
- Department of Chemistry, McGill University, Montreal H3A 0B8, Quebec, Canada
| | - Erin L Dodd
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance Montréal, H2X 2J6 Québec, Canada
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
| |
Collapse
|
5
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Solvent-Driven Variations of Third-Order Nonlinear Thermo-Optical Features of Glutaric Acid-Directed Self-Healing Supramolecular Ni(II) Metallogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16584-16595. [PMID: 37934977 DOI: 10.1021/acs.langmuir.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The generation of solvent-directed self-healing supramolecular Ni(II) metallogels of glutaric acid (i.e., Ni-Glu-DMF and Ni-Glu-DMSO) is described in this article. Polar aprotic solvents like N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) are separately entrapped into the Ni(II)-acetate salt and glutaric acid-mediated networks to attain the semisolid flexible scaffolds. The gel nature of the fabricated materials is experimentally proven through different rheological tests such as amplitude sweep, frequency sweep, and thixotropic (time sweep) measurements. The self-repairing strategy and load-bearing features of the synthesized metallogel are studied in this work. The different supramolecular noncovalent interactions working within the soft scaffold are clearly explored. The formation strategy and the microstructural features of these synthesized metallogels are scrutinized through a Fourier transform infrared (FT-IR) spectroscopy study and field-emission scanning electron microscopy (FESEM) morphological analyses. The FT-IR spectroscopy observation displays a considerable amount of shifting of the infrared (IR) peaks of the xerogel samples of both the metallogels Ni-Glu-DMF and Ni-Glu-DMSO. The electrospray ionization (ESI)-mass spectroscopy result demonstrates the plausible construction of the metallogel network. In order to examine the nonlinear optical characteristics of the two synthesized self-healing metallogels Ni-Glu-DMSO and Ni-Glu-DMF, Z-scan measurements are carried out with a continuous wave (CW) diode-pumped solid-state (DPSS) laser at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels were evaluated by analyzing the experimental data from the Sheik-Bahae formalism. The nonlinear thermo-optical study reveals that these solvent-dependent metallogels show negative signs of nonlinear refractive index and nonlinear absorption coefficient. The figure of merit calculated for these compounds shows good agreement for their use in nonlinear photonic devices.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|