1
|
Singh V, Cheng C, Weinacht T, Matsika S. Stable excited dication: trapping on the S 1 state of formaldehyde dication after strong field ionization. Phys Chem Chem Phys 2022; 24:20701-20708. [PMID: 35894510 DOI: 10.1039/d2cp02604j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combined theoretical and experimental work examines the dynamics of dication formaldehyde produced by strong field ionization. Trajectory surface hopping dynamics on the first several singlet electronic states of the formaldehyde dication are used to examine the relaxation pathways and dissociation channels, while kinetic energy distributions after strong field ionization of formaldehyde and deuterated formaldehyde are used to confirm the theoretical predictions. We find that the first excited state of the formaldehyde dication is stable, neither decays to the ground state nor dissociates, even though the ground state and higher lying states are directly dissociative. The stability of the first excited state is explained by its symmetry which does not allow for radiative or nonradiative transitions to the ground state and by large barriers to dissociate on the excited state surface.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Chuan Cheng
- Department of Physics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Thomas Weinacht
- Department of Physics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
2
|
Fujise H, Uemura M, Hasegawa H, Ikeya D, Matsuda A, Morishita T, Madsen LB, Jensen F, Tolstikhin OI, Hishikawa A. Helicity-dependent dissociative tunneling ionization of CF 4 in multicycle circularly polarized intense laser fields. Phys Chem Chem Phys 2022; 24:8962-8969. [PMID: 35380001 DOI: 10.1039/d1cp05858d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dissociative tunneling ionization of tetrafluoromethane (CF4) in circularly polarized ultrashort intense laser fields (35 fs, 0.8 × 1014 W cm-2, 1035 nm), CF4 → CF4+ + e- → CF3+ + F + e-, has been studied by three-dimensional electron-ion coincidence momentum imaging. The photoelectron angular distribution in the recoil frame revealed that the dissociative tunneling ionization occurs efficiently when the laser electric field points from F to C. The obtained results are qualitatively consistent with the theoretical predictions by the weak-field asymptotic theory (WFAT) for tunneling ionization from the highest and next-highest occupied molecular orbitals, HOMO (1t1), and HOMO-1 (4t2), respectively. On the other hand, the angular distribution shows clear dependences on the polarization helicity, indicating that the breaking of the C-F bonds is sensitive to the helicity of the multicycle circularly polarized laser fields.
Collapse
Affiliation(s)
- H Fujise
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - M Uemura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - H Hasegawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - D Ikeya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - A Matsuda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - T Morishita
- Institute for Advanced Science, The University of Electro-Communications, 1-5-1 Chofu-ga-oka, Chofu-shi, Tokyo 182-8585, Japan
| | - L B Madsen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - F Jensen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - O I Tolstikhin
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - A Hishikawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan. .,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|