1
|
Wang D, Qiu Y, Beyerle ER, Huang X, Tiwary P. Information Bottleneck Approach for Markov Model Construction. J Chem Theory Comput 2024; 20:5352-5367. [PMID: 38859575 PMCID: PMC11199095 DOI: 10.1021/acs.jctc.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Markov state models (MSMs) have proven valuable in studying the dynamics of protein conformational changes via statistical analysis of molecular dynamics simulations. In MSMs, the complex configuration space is coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defining states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within the lag time. This process effectively coarse-grains time and space, integrating out rapid motions within metastable states. Thus, MSMs possess a multiresolution nature, where the granularity of states can be adjusted according to the time-resolution, offering flexibility in capturing system dynamics. This work introduces a continuous embedding approach for molecular conformations using the state predictive information bottleneck (SPIB), a framework that unifies dimensionality reduction and state space partitioning via a continuous, machine learned basis set. Without explicit optimization of the VAMP-based scores, SPIB demonstrates state-of-the-art performance in identifying slow dynamical processes and constructing predictive multiresolution Markovian models. Through applications to well-validated mini-proteins, SPIB showcases unique advantages compared to competing methods. It autonomously and self-consistently adjusts the number of metastable states based on a specified minimal time resolution, eliminating the need for manual tuning. While maintaining efficacy in dynamical properties, SPIB excels in accurately distinguishing metastable states and capturing numerous well-populated macrostates. This contrasts with existing VAMP-based methods, which often emphasize slow dynamics at the expense of incorporating numerous sparsely populated states. Furthermore, SPIB's ability to learn a low-dimensional continuous embedding of the underlying MSMs enhances the interpretation of dynamic pathways. With these benefits, we propose SPIB as an easy-to-implement methodology for end-to-end MSM construction.
Collapse
Affiliation(s)
- Dedi Wang
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yunrui Qiu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, United States
- Data Science Institute, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Eric R. Beyerle
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, United States
- Data Science Institute, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
- University of Maryland Institute for Health Computing, Bethesda, MD 20852, United States
| |
Collapse
|
2
|
Voelz VA, Pande VS, Bowman GR. Folding@home: Achievements from over 20 years of citizen science herald the exascale era. Biophys J 2023; 122:2852-2863. [PMID: 36945779 PMCID: PMC10398258 DOI: 10.1016/j.bpj.2023.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Simulations of biomolecules have enormous potential to inform our understanding of biology but require extremely demanding calculations. For over 20 years, the Folding@home distributed computing project has pioneered a massively parallel approach to biomolecular simulation, harnessing the resources of citizen scientists across the globe. Here, we summarize the scientific and technical advances this perspective has enabled. As the project's name implies, the early years of Folding@home focused on driving advances in our understanding of protein folding by developing statistical methods for capturing long-timescale processes and facilitating insight into complex dynamical processes. Success laid a foundation for broadening the scope of Folding@home to address other functionally relevant conformational changes, such as receptor signaling, enzyme dynamics, and ligand binding. Continued algorithmic advances, hardware developments such as graphics processing unit (GPU)-based computing, and the growing scale of Folding@home have enabled the project to focus on new areas where massively parallel sampling can be impactful. While previous work sought to expand toward larger proteins with slower conformational changes, new work focuses on large-scale comparative studies of different protein sequences and chemical compounds to better understand biology and inform the development of small-molecule drugs. Progress on these fronts enabled the community to pivot quickly in response to the COVID-19 pandemic, expanding to become the world's first exascale computer and deploying this massive resource to provide insight into the inner workings of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and aid the development of new antivirals. This success provides a glimpse of what is to come as exascale supercomputers come online and as Folding@home continues its work.
Collapse
Affiliation(s)
- Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | | | - Gregory R Bowman
- Departments of Biochemistry & Biophysics and of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Qiu Y, O’Connor MS, Xue M, Liu B, Huang X. An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes. J Chem Theory Comput 2023; 19:4728-4742. [PMID: 37382437 PMCID: PMC11042546 DOI: 10.1021/acs.jctc.3c00318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Conformational changes (i.e., dynamic transitions between pairs of conformational states) play important roles in many chemical and biological processes. Constructing the Markov state model (MSM) from extensive molecular dynamics (MD) simulations is an effective approach to dissect the mechanism of conformational changes. When combined with transition path theory (TPT), MSM can be applied to elucidate the ensemble of kinetic pathways connecting pairs of conformational states. However, the application of TPT to analyze complex conformational changes often results in a vast number of kinetic pathways with comparable fluxes. This obstacle is particularly pronounced in heterogeneous self-assembly and aggregation processes. The large number of kinetic pathways makes it challenging to comprehend the molecular mechanisms underlying conformational changes of interest. To address this challenge, we have developed a path classification algorithm named latent-space path clustering (LPC) that efficiently lumps parallel kinetic pathways into distinct metastable path channels, making them easier to comprehend. In our algorithm, MD conformations are first projected onto a low-dimensional space containing a small set of collective variables (CVs) by time-structure-based independent component analysis (tICA) with kinetic mapping. Then, MSM and TPT are constructed to obtain the ensemble of pathways, and a deep learning architecture named the variational autoencoder (VAE) is used to learn the spatial distributions of kinetic pathways in the continuous CV space. Based on the trained VAE model, the TPT-generated ensemble of kinetic pathways can be embedded into a latent space, where the classification becomes clear. We show that LPC can efficiently and accurately identify the metastable path channels in three systems: a 2D potential, the aggregation of two hydrophobic particles in water, and the folding of the Fip35 WW domain. Using the 2D potential, we further demonstrate that our LPC algorithm outperforms the previous path-lumping algorithms by making substantially fewer incorrect assignments of individual pathways to four path channels. We expect that LPC can be widely applied to identify the dominant kinetic pathways underlying complex conformational changes.
Collapse
Affiliation(s)
- Yunrui Qiu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael S. O’Connor
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mingyi Xue
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bojun Liu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Beyerle ER, Mehdi S, Tiwary P. Quantifying Energetic and Entropic Pathways in Molecular Systems. J Phys Chem B 2022; 126:3950-3960. [PMID: 35605180 DOI: 10.1021/acs.jpcb.2c01782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When examining dynamics occurring at nonzero temperatures, both energy and entropy must be taken into account to describe activated barrier crossing events. Furthermore, good reaction coordinates need to be constructed to describe different metastable states and the transition mechanisms between them. Here we use a physics-based machine learning method called state predictive information bottleneck (SPIB) to find nonlinear reaction coordinates for three systems of varying complexity. SPIB is able to correctly predict an entropic bottleneck for an analytical flat-energy double-well system and identify the entropy- and energy-dominated pathways for an analytical four-well system. Finally, for a simulation of benzoic acid permeation through a lipid bilayer, SPIB is able to discover the entropic and energetic barriers to the permeation process. Given these results, we thus establish that SPIB is a reasonable and robust method for finding the important entropy, energy, and enthalpy barriers in physical systems, which can then be used to enhance the understanding and sampling of different activated mechanisms.
Collapse
Affiliation(s)
- Eric R Beyerle
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20740, United States
| | - Shams Mehdi
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|