1
|
Bosco MS, Naud-Martin D, Gonzalez-Galindo C, Auvray M, Araya-Farias M, Gropplero G, Rozenholc Y, Topcu Z, Gaucher JF, Tsatsaris V, Descroix S, Mahuteau-Betzer F, Gagey-Eilstein N. Bimodal Array-Based Fluorescence Sensor and Microfluidic Technology for Protein Fingerprinting and Clinical Diagnosis. ACS APPLIED BIO MATERIALS 2024; 7:8236-8247. [PMID: 39530215 DOI: 10.1021/acsabm.4c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteins play a crucial role in determining disease states in humans, making them prime targets for the development of diagnostic sensors. The developed sensor array is used to investigate global proteomic changes by fingerprinting multifactorial disease states in model urine simulating phenylketonuria and in serum from preeclamptic pregnant women. Here, we report a fluorescence-based chemical sensing array that exploits the host-guest interaction between cucurbit[7]uril (CB[7]) and fluorescent triphenylamine derivatives (TPA) to detect a range of proteins. Using linear discriminant analysis, we identify fluorescence fingerprints of 14 proteins with over 98% accuracy in buffer and human serum. The array is optimized on an automated droplet microfluidic-based platform, for high-throughput sensing with controlled composition and lower sample volumes. This sensor enables the discrimination of proteins in physiological buffer and human serum, with promising applications in disease diagnosis.
Collapse
Affiliation(s)
- Monica Swetha Bosco
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| | - Delphine Naud-Martin
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Carlos Gonzalez-Galindo
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| | - Marie Auvray
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Monica Araya-Farias
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Giacomo Gropplero
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Yves Rozenholc
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Zeki Topcu
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Jean-Francois Gaucher
- CiTCoM, Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, 75006 Paris, France
| | - Vassilis Tsatsaris
- Department of Obstetric, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 bd Port-Royal, 75014 Paris, France
| | - Stéphanie Descroix
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Florence Mahuteau-Betzer
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Nathalie Gagey-Eilstein
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| |
Collapse
|
2
|
Mencaroni L, Bianconi T, Aurora Mancuso M, Sheokand M, Elisei F, Misra R, Carlotti B. Unlocking the Potential of Push-Pull Pyridinic Photobases: Aggregation-Induced Excited-State Proton Transfer. Chemistry 2024:e202403388. [PMID: 39531467 DOI: 10.1002/chem.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The pH effect on the photophysics of three push-pull compounds bearing dimethoxytriphenylamine (TPA-OMe) as electron donor and pyridine as electron acceptor, with different ortho-functionalization (-H, -Br, and -TPA-OMe), is assessed through steady-state and time-resolved spectroscopic techniques in DMSO/water mixed solutions and in water dispersions over a wide pH range. The enhanced intramolecular charge transfer upon protonation of the pyridinic ring leads to the acidochromic (from colorless to yellow) and acido(fluoro)chromic (from cyan to pink) behaviours of the investigated compounds. In dilute DMSO/buffer mixtures these molecules exhibited low pKa values (≤3.5) and extremely short singlet lifetimes. Nevertheless, it is by exploiting the aggregation phenomenon in aqueous environment that the practical use of these compounds largely expands: i) the basicity increases (pKa≈4.5) approaching the optimum values for pH-sensing in cancer cell recognition; ii) the fluorescence efficiencies are boosted due to Aggregation-Induced Emission (AIE), making these compounds appealing as fluorescent probes; iii) longer singlet lifetimes enable Excited-State Proton Transfer, paving the way for the application of these molecules as photobases (pKa*=9.1). The synergy of charge and proton transfers combined to the AIE behaviour in these pyridines allows tunable multi-responsive optical properties providing valuable information for the design of new light-emitting photobases.
Collapse
Affiliation(s)
- Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, 06123, Perugia, Italy
| | - Tommaso Bianconi
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, 06123, Perugia, Italy
- Department of Chemistry, University of Wisconsin-Madison, 53706, Madison, USA
| | - Maria Aurora Mancuso
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, 06123, Perugia, Italy
- Istituto di Tecnologie Avanzate per l'Energia ''Nicola Giordano'' (CNR-ITAE), 98126, Messina, Italy
| | - Manju Sheokand
- Department of Chemistry, Indian Institute of Technology, 453552, Indore, India
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, 06123, Perugia, Italy
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, 453552, Indore, India
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, 06123, Perugia, Italy
| |
Collapse
|
3
|
Delgado-Pinar E, Medeiros M, Costa T, Seixas de Melo JS. Highly Selective Fluorescent Sensors: Polyethylenimine Derivatives of Triphenylamine and Coumarin for GTP and ATP Interaction via Fluorescence Lifetime Imaging Microscopy. ACS APPLIED POLYMER MATERIALS 2023; 5:6176-6185. [PMID: 37588082 PMCID: PMC10426326 DOI: 10.1021/acsapm.3c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Chemical derivatives of polyethylenimine (PEI) receptors with either triphenylamine (TPA) or 7-hydroxy-4-methyl-coumarin (Cou) form stable complexes with adenine and guanine nucleotides in water. The host-guest complex modulation is found to be based on noncovalent molecular interactions such as π-π stacking and hydrogen bonding, which are dependent on the aromatic moieties attached to the polyaminic (PEI) backbone. PEI-TPA acts as a chemosensor with a recognition driving force based on aggregation-induced emission (AIE), involving π-π interaction between the nucleic base and TPA. It detects GTP by a chelation enhancement quenching effect of fluorescence (CHEQ) with a measured logarithm stability constant, log β = 7.7. By varying the chemical characteristics of the fluorophore, as in the PEI-Cou system, the driving force for recognition changes from a π-π interaction to an electrostatic interaction. The coumarin derivative detects ATP with a log β value one order of magnitude higher than that for GTP, allowing for the selective recognition of the two nucleotides in a 100% aqueous solution. Furthermore, fluorescence lifetime imaging microscopy (FLIM) allows for a correlation between the selectivity of PEI-TPA toward nucleotides and the morphology of the structures formed upon ATP and GTP recognition. This study offers valuable insights into the design of receptors for the selective recognition of nucleotides in water.
Collapse
Affiliation(s)
- Estefanía Delgado-Pinar
- CQC-IMS,
Department of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
- Instituto
de Ciencia, Molecular, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Matilde Medeiros
- CQC-IMS,
Department of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Telma Costa
- CQC-IMS,
Department of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | | |
Collapse
|
4
|
Qin L, Ren X, Hu K, Wu D, Guo Z, Wang S, Jiang L, Hu Y. Supramolecular host-guest interaction-driven electrochemical recognition for pyrophosphate and alkaline phosphatase analysis. Chembiochem 2022; 23:e202200413. [PMID: 35997506 DOI: 10.1002/cbic.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Indexed: 11/10/2022]
Abstract
Herein, we report an electrochemical biosensor based on the supramolecular host-guest recognition between cucurbit[7]uril (CB[7]) and L -Phenylalanine-Cu(II) Complex for pyrophosphate (PPi) and alkaline phosphatase (ALP) analysis. First, L -Phe-Cu(II) Complex is simply synthesized by the complexation of Cu(II) (metal node) with L -Phe (bioorganic ligand), which can be immobilized onto CB[7] modified electrode via host-guest interaction of CB[7] and L -Phe. In this process, the signal of the Complex triggered electro-catalytic reduction of H 2 O 2 can be captured. Next, in the view of strong chelation between PPi and Cu(II), a biosensing system of the model "PPi and Cu(II) premixing, then adding L -Phe" is designed and the platform can be applied for PPi analysis well by hampering the formation of L -Phe-Cu(II) Complex. Along with ALP introduction, PPi can be hydrolyzed into orthophosphate (Pi), where abundant Cu(II) ions are released to form L -Phe-Cu(II) Complex, which gives rise to the catalytic reaction of Complex to H 2 O 2 reduction. The quantitative analysis of H 2 O 2 , PPi and ALP activity is achieved successfully and the detection of limits are 0.067 μM, 0.42 μM and 0.09 mU/mL ( S / N =3), respectively. With the merits of high sensitivity and selectivity, cost-effectiveness, and simplification, our developed analytical system has great potential to act on diagnosis and treatment of ALP-related diseases.
Collapse
Affiliation(s)
| | | | | | - Di Wu
- Ningbo College of Health Sciences, Chemistry, CHINA
| | | | - Sui Wang
- Ningbo University, Chemistry, CHINA
| | | | - Yufang Hu
- Ningbo University, Chemistry, 818 Fenghua Road,Jiangbei,Ningbo,Zhejiang, 315211, Ningbo, CHINA
| |
Collapse
|