1
|
Simonis ED, Blanchard GJ. Evaluating the contributions to conductivity in room temperature ionic liquids. Phys Chem Chem Phys 2024; 26:17048-17056. [PMID: 38836605 DOI: 10.1039/d4cp01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The conductivity of room temperature ionic liquids is not described adequately by the Nernst-Einstein equation, which accounts only for Brownian motion of the ions. We report on the conductivity of the ionic liquid 1-butyl-3-methylimidazolum bis(trifluoromethylsulfonyl) imide (BMIM TFSI), comparing the known conductivity of this RTIL to the diffusion constants of the cationic and anionic species over a range of length scales, using time-resolved fluorescence depolarization and fluorescence recovery after photobleaching (FRAP) measurements of chromophores in the RTIL. Our data demonstrate that the diffusional contribution to molar conductivity is ca. 50%. Another mechanism for the transmission of charged species in RTILs is responsible for the "excess" molar conductivity, and we consider possible contributions.
Collapse
Affiliation(s)
- Emily D Simonis
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI 48824, USA.
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
Hossain MI, Wang H, Adhikari L, Baker GA, Mezzetta A, Guazzelli L, Mussini P, Xie W, Blanchard GJ. Structure-Dependence and Mechanistic Insights into the Piezoelectric Effect in Ionic Liquids. J Phys Chem B 2024; 128:1495-1505. [PMID: 38301038 PMCID: PMC10961722 DOI: 10.1021/acs.jpcb.3c07967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
We reported recently that two imidazolium room-temperature ionic liquids (RTILs) exhibit the direct piezoelectric effect (J. Phys. Chem. Lett., 2023, 14, 2731-2735). We have subsequently investigated several other RTILs with pyrrolidinium and imidazolium cations and tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions in an effort to gain insight into the generality and mechanism of the effect. All the RTILs studied exhibit the direct piezoelectric effect, with a magnitude (d33) and threshold force that depend on the structures of both the cation and anion. The structure-dependence and existence of a threshold force for the piezoelectric effect are consistent with a pressure-induced liquid-to-crystalline solid phase transition in the RTILs, and this is consistent with experimental X-ray diffraction data.
Collapse
Affiliation(s)
- Md. Iqbal Hossain
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Haozhe Wang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Laxmi Adhikari
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrea Mezzetta
- Department
of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department
of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Patrizia Mussini
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Weiwei Xie
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - G. J. Blanchard
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Hossain MI, Shams AB, Das Gupta S, Blanchard GJ, Mobasheri A, Hoque Apu E. The Potential Role of Ionic Liquid as a Multifunctional Dental Biomaterial. Biomedicines 2023; 11:3093. [PMID: 38002093 PMCID: PMC10669305 DOI: 10.3390/biomedicines11113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
In craniofacial research and routine dental clinical procedures, multifunctional materials with antimicrobial properties are in constant demand. Ionic liquids (ILs) are one such multifunctional intelligent material. Over the last three decades, ILs have been explored for different biomedical applications due to their unique physical and chemical properties, high task specificity, and sustainability. Their stable physical and chemical characteristics and extremely low vapor pressure make them suitable for various applications. Their unique properties, such as density, viscosity, and hydrophilicity/hydrophobicity, may provide higher performance as a potential dental material. ILs have functionalities for optimizing dental implants, infiltrate materials, oral hygiene maintenance products, and restorative materials. They also serve as sensors for dental chairside usage to detect oral cancer, periodontal lesions, breath-based sobriety, and dental hard tissue defects. With further optimization, ILs might also make vital contributions to craniofacial regeneration, oral hygiene maintenance, oral disease prevention, and antimicrobial materials. This review explores the different advantages and properties of ILs as possible dental material.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (M.I.H.); (G.J.B.)
| | - Abdullah Bin Shams
- The Edward S. Rogers Sr. Department of Electrical Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada;
| | - Shuvashis Das Gupta
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
| | - Gary J. Blanchard
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (M.I.H.); (G.J.B.)
| | - Ali Mobasheri
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing, University of Liège, 4000 Liège, Belgium
- State Research Institute Centre for Innovative Medicine, 08410 Vilnius, Lithuania
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ehsanul Hoque Apu
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Centre for International Public Health and Environmental Research, Bangladesh (CIPHER,B), Dhaka 1207, Bangladesh
| |
Collapse
|
4
|
Abstract
The piezoelectric effect was discovered over a century ago, and it has found wide application since that time. The direct piezoelectric effect is the production of charge upon application of force to a material, and the converse piezoelectric effect is a change in the material dimension(s) upon the application of a potential. To date, piezoelectric effects have been observed only in solid-phase materials. We report here the observation of the direct piezoelectric effect in room-temperature ionic liquids (RTILs). The RTILs 1-butyl-3-methyl imidazolium bis(trifluoromethyl-sulfonyl)imide (BMIM+TFSI-) and 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl) imide (HMIM+TFSI-) produce a potential upon the application of force when confined in a cell, with the magnitude of the potential being directly proportional to the force applied. The effect is one order of magnitude smaller than that seen in quartz. This is the first report to our knowledge of the direct piezoelectric effect in a neat liquid. Its discovery has fundamental implications about the organization and dynamics in ionic liquids and invites theoretical treatment.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Hossain MI, Adhikari L, Baker GA, Blanchard GJ. Relating the Induced Free Charge Density Gradient in a Room-Temperature Ionic Liquid to Molecular-Scale Organization. J Phys Chem B 2023; 127:1780-1788. [PMID: 36790441 DOI: 10.1021/acs.jpcb.2c07745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We report on dilution-dependent changes in the local environments of chromophores incorporated into room-temperature ionic liquid (RTIL)-molecular solvent binary systems where the ionic liquid cation and molecular solvent possess the same alkyl chain length. We have used the RTIL 1-decyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (DMPyrr+TFSI-) and the molecular solvent 1-decanol. Perylene was used as a non-polar probe, and cresyl violet (CV+) was used as a polar probe chromophore. We observe that in both regions there is a change in the chromophore local environments with increasing 1-decanol content. The changes in the nonpolar regions of the binary RTIL-molecular solvent system occur at a lower 1-decanol concentration than changes in the polar regions. Both chromophores reorient as oblate rotors in this binary system, allowing detailed information on the relative values of the Cartesian components of the rotational diffusion constants to be extracted from the experimental data. The induced free charge density gradient, ρf, known to exist in RTILs, persists to high 1-decanol content (1-decanol mole fraction of 0.75), with the structural details of the gradient being reflected in depth-dependent changes in the Cartesian components of the rotational diffusion constants of CV+. This is the first time that changes in molecular organization have been correlated with ρf.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Iqbal Hossain M, Blanchard G. Dilution-induced changes in room temperature ionic liquids. Persistent compositional heterogeneity and the importance of dipolar interactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Wang Y, Adhikari L, Baker GA, Blanchard GJ. Cation structure-dependence of the induced free charge density gradient in imidazolium and pyrrolidinium ionic liquids. Phys Chem Chem Phys 2022; 24:19314-19320. [PMID: 35929735 DOI: 10.1039/d2cp01066f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the structure-dependence and magnitude of the induced free charge density gradient (ρf) seen in room-temperature ionic liquids (RTILs) with imidazolium and pyrrolidinium cations. We characterize the spatially-resolved rotational diffusion dynamics of a trace-level cationic chromophore to characterize ρf in three different pyrrolidinium RTILs and two imidazolium RTILs. Our data show that the magnitude of ρf depends primarily on the alkyl chain length of RTIL cation and the persistence length of ρf is independent of RTILs' cation structure. These findings collectively suggest that mesoscopic structure in RTILs plays a significant role in allowing charge density gradients to form.
Collapse
Affiliation(s)
- Yufeng Wang
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| | - Laxmi Adhikari
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - Gary A Baker
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
Wang Y, Adhikari L, Baker GA, Blanchard GJ. Cation structure-dependence of the Pockels effect in aprotic ionic liquids. Phys Chem Chem Phys 2022; 24:18067-18072. [PMID: 35861617 DOI: 10.1039/d2cp01068b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the dependence of surface charge-induced birefringence (the Pockels effect) in room temperature ionic liquids (RTILs) with different cation constituents. The induced birefringence is related to the induced free charge density gradient (ρf) in the RTIL. The RTILs are confined in a lens-shaped cell and the surface charge density of the concave cell surface is controlled by the current passed through the surface ITO film. We find that, in all cases, the induced birefringence is proportional to the surface charge density and that the change in refractive index nearest the ITO surface can be on the order of 20%. Our findings indicate that the induced birefringence depends more sensitively on the cation aliphatic substituent length than on the identity of the charge-carrying headgroup.
Collapse
Affiliation(s)
- Yufeng Wang
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| | - Laxmi Adhikari
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - Gary A Baker
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| |
Collapse
|