1
|
Karir G, Mendez-Vega E, Portela-Gonzalez A, Saraswat M, Sander W, Hemberger P. The elusive phenylethynyl radical and its cation: synthesis, electronic structure, and reactivity. Phys Chem Chem Phys 2024; 26:18256-18265. [PMID: 38904382 DOI: 10.1039/d4cp02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Alkynyl radicals and cations are crucial reactive intermediates in chemistry, but often evade direct detection. Herein, we report the direct observation of the phenylethynyl radical (C6H5CC˙) and its cation (C6H5CC+), which are two of the most reactive intermediates in organic chemistry. The radical is generated via pyrolysis of (bromoethynyl)benzene at temperatures above 1500 K and is characterized by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES). Photoionization of the phenylethynyl radical yields the phenylethynyl cation, which has never been synthesized due to its extreme electrophilicity. Vibrationally-resolved ms-TPES assisted by ab initio calculations unveiled the complex electronic structure of the phenylethynyl cation, which appears at an adiabatic ionization energy (AIE) of 8.90 ± 0.05 eV and exhibits an uncommon triplet (3B1) ground state, while the closed-shell singlet (1A1) state lies just 2.8 kcal mol-1 (0.12 eV) higher in energy. The reactive phenylethynyl radical abstracts hydrogen to form ethynylbenzene (C6H5CCH) but also isomerizes via H-shift to the o-, m-, and p-ethynylphenyl isomers (C6H4CCH). These radicals are very reactive and undergo ring-opening followed by H-loss to form a mixture of C8H4 triynes, along with low yields of cyclic 3- and 4-ethynylbenzynes (C6H3CCH). At higher temperatures, dehydrogenation from the unbranched C8H4 triynes forms the linear tetraacetylene (C8H2), an astrochemically relevant polyyne.
Collapse
Affiliation(s)
- Ginny Karir
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany.
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany.
| | | | - Mayank Saraswat
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany.
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany.
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute (PSI), Villigen CH-5232, Switzerland.
| |
Collapse
|
2
|
Fischer I, Hemberger P. Photoelectron Photoion Coincidence Spectroscopy of Biradicals. Chemphyschem 2023; 24:e202300334. [PMID: 37325876 DOI: 10.1002/cphc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The electronic structure of biradicals is characterized by the presence of two unpaired electrons in degenerate or near-degenerate molecular orbitals. In particular, some of the most relevant species are highly reactive, difficult to generate cleanly and can only be studied in the gas phase or in matrices. Unveiling their electronic structure is, however, of paramount interest to understand their chemistry. Photoelectron photoion coincidence (PEPICO) spectroscopy is an excellent approach to explore the electronic states of biradicals, because it enables a direct correlation between the detected ions and electrons. This permits to extract unique vibrationally resolved photoion mass-selected threshold photoelectron spectra (ms-TPES) to obtain insight in the electronic structure of both the neutral and the cation. In this review we highlight most recent advances on the spectroscopy of biradicals and biradicaloids, utilizing PEPICO spectroscopy and vacuum ultraviolet (VUV) synchrotron radiation.
Collapse
Affiliation(s)
- Ingo Fischer
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Am Hubland, D-97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232, Villigen, Switzerland
| |
Collapse
|
3
|
Lowe B, Cardona AL, Salas J, Bodi A, Mayer PM, Burgos Paci MA. Probing the pyrolysis of ethyl formate in the dilute gas phase by synchrotron radiation and theory. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4901. [PMID: 36691327 DOI: 10.1002/jms.4901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The thermal decomposition of the atmospheric constituent ethyl formate was studied by coupling flash pyrolysis with imaging photoelectron photoion coincidence (iPEPICO) spectroscopy using synchrotron vacuum ultraviolet (VUV) radiation at the Swiss Light Source (SLS). iPEPICO allows photoion mass-selected threshold photoelectron spectra (ms-TPES) to be obtained for pyrolysis products. By threshold photoionization and ion imaging, parent ions of neutral pyrolysis products and dissociative photoionization products could be distinguished, and multiple spectral carriers could be identified in several ms-TPES. The TPES and mass-selected TPES for ethyl formate are reported for the first time and appear to correspond to ionization of the lowest energy conformer having a cis (eclipsed) configuration of the O=C(H)-O-C(H2 )-CH3 and trans (staggered) configuration of the O=C(H)-O-C(H2 )-CH3 dihedral angles. We observed the following ethyl formate pyrolysis products: CH3 CH2 OH, CH3 CHO, C2 H6 , C2 H4 , HC(O)OH, CH2 O, CO2 , and CO, with HC(O)OH and C2 H4 pyrolyzing further, forming CO + H2 O and C2 H2 + H2 . The reaction paths and energetics leading to these products, together with the products of two homolytic bond cleavage reactions, CH3 CH2 O + CHO and CH3 CH2 + HC(O)O, were studied computationally at the M06-2X-GD3/aug-cc-pVTZ and SVECV-f12 levels of theory, complemented by further theoretical methods for comparison. The calculated reaction pathways were used to derive Arrhenius parameters for each reaction. The reaction rate constants and branching ratios are discussed in terms of the residence time and newly suggest carbon monoxide as a competitive primary fragmentation product at high temperatures.
Collapse
Affiliation(s)
- Bethany Lowe
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Alejandro L Cardona
- INFIQC - CONICET, Departamento fisicoquímica, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juana Salas
- INFIQC - CONICET, Departamento fisicoquímica, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Paul M Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Maxi A Burgos Paci
- INFIQC - CONICET, Departamento fisicoquímica, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Hirsch F, Fischer I, Bakels S, Rijs AM. Gas-Phase Infrared Spectra of the C 7H 5 Radical and Its Bimolecular Reaction Products. J Phys Chem A 2022; 126:2532-2540. [PMID: 35427137 DOI: 10.1021/acs.jpca.2c01228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resonance-stabilized radicals are considered as possible intermediates in the formation of polycyclic aromatic hydrocarbons (PAHs) in interstellar space. Here, we investigate the fulvenallenyl radical, the most stable C7H5 isomer by IR/UV ion dip spectroscopy employing free electron laser radiation in the mid-infrared region between 550 and 1750 cm-1. The radical is generated by pyrolysis from phthalide. Various jet-cooled reaction products are identified by their mass-selective IR spectra in the fingerprint region, based on a comparison with computed spectra. Interestingly, benzyl is present as a second resonance-stabilized radical. It is connected to fulvenallenyl by a sequence of two H atom losses or additions. Among the identified aromatic hydrocarbons are toluene and styrene, as well as polycyclic molecules, such as indene, naphthalene, fluorene and phenanthrene. Mechanisms for the formation of PAH from C7H5 have already been suggested in previous computational work. In particular, the radical/radical reaction of two fulvenallenyl radicals provides an efficient route to phenanthrene in one bimolecular step and might be relevant for PAH formation under astrochemical conditions.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
5
|
Schleier D, Hemberger P, Bodi A, Bouwman J. Threshold Photoelectron Spectroscopy of Quinoxaline, Quinazoline, and Cinnoline. J Phys Chem A 2022; 126:2211-2221. [PMID: 35357143 DOI: 10.1021/acs.jpca.2c01073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The threshold photoelectron spectra of cinnoline, quinazoline, and quinoxaline, three small naphthalene-analogue polycyclic nitrogen-containing hydrocarbons of C8H6N2 composition, were recorded. The spectra are assigned to understand their electronic structure and the role of isomerism. Furthermore, this work provides reference data for the selective identification of such species as gas-phase reaction products at low number densities. Imaging photoelectron photoion coincidence spectroscopy was used at the VUV beamline of the Swiss Light Source to record the spectra from the ionization onset to 12 eV. To assign and interpret the spectral features, we relied on (time-dependent) density functional theory and EOM-IP-CCSD calculations and computed vertical and adiabatic ionization energies as well as Franck-Condon factors to simulate ground- and excited-state spectra. Vibrational progressions belonging to four electronic states could be simulated in each of the samples, and we report a total of 12 adiabatic ionization energies, including the ones to the ground and excited cation states. Such a wealth of spectral information, as well as the reliable ab initio modeling, is promising with regards to analytical applications. While cinnoline can be easily distinguished by its lowest adiabatic ionization energy, quinazoline and quinoxaline show different vibrational fingerprints, which can be used to distinguish the three isomers even in complex reaction mixtures. Finally, we also relate the cation electronic states to the neutral molecular orbitals and note that Koopmans' approximation fails in these N2-containing species very much like it does in N2.
Collapse
Affiliation(s)
- Domenik Schleier
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, NL 2300 RA Leiden, The Netherlands.,Mass Spectrometry in Reactive Flows, Institute for Combustion and Gas Dynamics (IVG), Universität Duisburg-Essen, Duisburg 47057, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Jordy Bouwman
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT), NASA/SSERVI, Boulder, Colorado 80309, United States
| |
Collapse
|