1
|
Zhang X, Sun A, Jiang Z, Liu C, Wang S, Kong Y. Tunable and switchable multifunctional terahertz meta-mirror based on graphene and vanadium dioxide. Phys Chem Chem Phys 2024; 26:13915-13922. [PMID: 38666431 DOI: 10.1039/d4cp00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
We design a multifunctional THz polarization modulation meta-mirror integrated with polarization conversion and dichroism functions switched by temperature and voltage. The meta-mirror is composed of two-layered graphene metasurfaces and a layer of vanadium dioxide (VO2) on a gold film substrate. Linear-to-linear polarization conversion and linear dichroism (LD) can be switched by temperature control in the VO2 film and Fermi level adjustments in the graphene metasurfaces, where the polarization conversion ratio (PCR) is higher than 0.9 in the range of 2.89 THz to 4.02 THz, LD value reached a maximum of 0.6 at 3.84 THz, and linear-to-circular polarization conversion and circular dichroism (CD) can also be tuned with ellipticity higher than 0.9 in the range of 2.32 THz to 2.69 THz and CD value as high as 0.71 at 2.45 THz. The proposed meta-mirror is the first THz metamaterial device integrating four switchable functions, including linear-to-linear polarization conversion, linear-to-circular polarization conversion, linear dichroism and circular dichroism. The meta-mirror is a promising design for compact system integration in THz imaging, sensing and biological detection applications.
Collapse
Affiliation(s)
- Xinzhi Zhang
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Aihui Sun
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhilong Jiang
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Cheng Liu
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shouyu Wang
- OptiX+ Laboratory, Wuxi University, Wuxi, Jiangsu, 214105, China
| | - Yan Kong
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Zhu Y, Huang Z, Su J, Tang B. Actively tunable and switchable terahertz metamaterials with multi-band perfect absorption and polarization conversion. Phys Chem Chem Phys 2024; 26:11649-11656. [PMID: 38592750 DOI: 10.1039/d3cp06310k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In this paper, we theoretically present and numerically demonstrate an actively tunable and switchable multi-functional metamaterial based on vanadium dioxide (VO2) and graphene in the terahertz region. When VO2 is in the metallic phase, the proposed metamaterial serves as a multi-band perfect absorber, which exhibits the characteristics of insensitive polarization and robust tolerance for variations of the incidence angle. When VO2 is in the insulator phase, the proposed metamaterial acts as a polarization converter, which can simultaneously achieve perfect linear-to-linear and linear-to-circular polarization conversions. The simulation results show the cross-polarization conversion rate can reach ∼100% at the frequency region from 6.09 to 6.43 THz as well as 8.15 THz. Moreover, the ellipticity of linear-to-circular polarization conversion reaches ±1 at frequencies of 5.75 and 8.34 THz, respectively, which means the linear polarization waves can be completely converted into circular polarization waves. The proposed metamaterial provides new insight for the design of optoelectronic devices with multi-functionality in the terahertz region.
Collapse
Affiliation(s)
- Ying Zhu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhiyu Huang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| | - Jiangbin Su
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Liu Z, Zhou T, Jin G, Su J, Tang B. Switchable asymmetric transmission with broadband polarization conversion in vanadium dioxide-assisted terahertz metamaterials. Phys Chem Chem Phys 2024; 26:1017-1022. [PMID: 38093658 DOI: 10.1039/d3cp05095e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
In this paper, we theoretically present a vanadium dioxide (VO2)-integrated metamaterial, which can achieve switchable single- and double-band asymmetric transmission (AT) in terahertz regions. When VO2 acts as a metal, the presented metamaterial device exhibits a single-band AT effect. In contrast, when VO2 transitions from the metal to the insulating state, a dual-band AT effect can be realized for the presented metamaterials. Also, it is demonstrated that there is a broadband near-perfect orthogonal polarization conversion associated with the AT effect. And the operating mechanisms are elucidated by using the Fabry-Pérot-like cavity model and the electromagnetic field distributions. Moreover, the presented nanostructure exhibits a robust tolerance for the incidence angle. Our designed metamaterial may have potential applications for switchable multi-functional devices in terahertz regimes.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| | - Tianle Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| | - Gui Jin
- Department of Electronic Information and Electronic Engineering, Xiangnan University, Chenzhou 423000, China
| | - Jiangbin Su
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Song Q, Cheng X, Liu T, Zhang Y, Zhou Z, Yang Y, Chen H, Tang B, Chen J, Yi Z. Terahertz absorber based on vanadium dioxide with high sensitivity and switching capability between ultra-wideband and ultra-narrowband. Phys Chem Chem Phys 2023; 25:29061-29069. [PMID: 37861653 DOI: 10.1039/d3cp03709f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The terahertz perfect absorber can be applied in the control, sensing and modulation of optical fields in micro- and nanostructures. However, they are only single function, complex device structure and low sensing sensitivity. Based on this, by introducing the bound state in the continuum (BIC) with infinite quality factor and field enhancement effect, and taking advantage of the phase transition characteristics of vanadium dioxide (VO2), we designed a terahertz perfect absorber device which can actively switch between ultra-wideband and ultra-narrowband. The absorption mechanism is explained by multipole analysis theory, impedance matching theory and electromagnetic field distribution. The broadband absorption is mainly due to the electric dipole resonance on metallic VO2 materials, and the absorption is more than 99% across 3.64-6.96 THz, and it has excellent characteristics such as robustness. Ultra-narrowband perfect absorption has a quality factor greater than 2200 due mainly to the implementation of symmetrically protected BIC with a sensing sensitivity of 2.575 THz per RIU. Therefore, this research could be widely used in the fields of integrated optical circuits, optoelectronic sensing and perceptual modulation of energy, as well as providing additional design ideas for the design of terahertz multifunctional devices.
Collapse
Affiliation(s)
- Qianli Song
- School of Mathematics and Science, School of Materials and Chemistry, The State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xingxin Cheng
- School of Mathematics and Science, School of Materials and Chemistry, The State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Tao Liu
- School of Mathematics and Science, School of Materials and Chemistry, The State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yanyu Zhang
- School of Mathematics and Science, School of Materials and Chemistry, The State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Zigang Zhou
- School of Mathematics and Science, School of Materials and Chemistry, The State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yongjia Yang
- School of Mathematics and Science, School of Materials and Chemistry, The State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hao Chen
- School of Mathematics and Science, School of Materials and Chemistry, The State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213163, China
| | - Jing Chen
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zao Yi
- School of Mathematics and Science, School of Materials and Chemistry, The State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China.
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|
5
|
Kang Q, Guo K, Guo Z. A tunable infrared emitter based on phase-changing material GST for visible-infrared compatible camouflage with thermal management. Phys Chem Chem Phys 2023; 25:27668-27676. [PMID: 37811767 DOI: 10.1039/d3cp02983b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Visible-infrared compatible camouflage is important to increase the counter-detection ability of a target due to the fast development of detection systems. However, most of the previously reported visible-infrared compatible camouflage structures are not suitable when the temperature of targets and type of background environment change. In this paper, we propose a tunable infrared emitter composed of ZnS/Ge/Ag/Ge2Sb2Te5/Ag films and numerically demonstrate visible-infrared compatible camouflage and radiation heat dissipation. Firstly, the proposed infrared emitter can produce different structural colors as the thickness of the ZnS film changes, which can be applied to visible camouflage. Secondly, the crystallization fraction of the Ge2Sb2Te5 (GST) layer could help to engineer the average emissivity of the proposed infrared emitter, achieving tunable mid-infrared (MIR) camouflage, radiation heat dissipation, and long-infrared (LIR) camouflage in wavelength ranges of 3-5 μm, 5-8 μm, and 8-14 μm, respectively. Finally, we numerically demonstrate the visible camouflage and infrared camouflage for different application scenarios by using the simulated visible and infrared images. This work has promising application potential in visible-infrared compatible camouflage technology.
Collapse
Affiliation(s)
- Qianlong Kang
- School of Computer and Information, Hefei University of Technology, Hefei, 230009, China.
| | - Kai Guo
- School of Computer and Information, Hefei University of Technology, Hefei, 230009, China.
| | - Zhongyi Guo
- School of Computer and Information, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
6
|
Gao S, Wei K, Yang H, Tang Y, Yi Z, Tang C, Tang B, Yi Y, Wu P. Design of Surface Plasmon Resonance-Based D-Type Double Open-Loop Channels PCF for Temperature Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:7569. [PMID: 37688037 PMCID: PMC10490675 DOI: 10.3390/s23177569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Here, we document a D-type double open-loop channel floor plasmon resonance (SPR) photonic crystal fiber (PCF) for temperature sensing. The grooves are designed on the polished surfaces of the pinnacle and backside of the PCF and covered with a gold (Au) film, and stomata are distributed around the PCF core in a progressive, periodic arrangement. Two air holes between the Au membrane and the PCF core are designed to shape a leakage window, which no longer solely averts the outward diffusion of Y-polarized (Y-POL) core mode energy, but also sets off its coupling with the Au movie from the leakage window. This SPR-PCF sensor uses the temperature-sensitive property of Polydimethylsiloxane (PDMS) to reap the motive of temperature sensing. Our lookup effects point out that these SPR-PCF sensors have a temperature sensitivity of up to 3757 pm/°C when the temperature varies from 5 °C to 45 °C. In addition, the maximum refractive index sensitivity (RIS) of the SPR-PCF sensor is as excessive as 4847 nm/RIU. These proposed SPR-PCF temperature sensors have an easy nanostructure and proper sensing performance, which now not solely improve the overall sensing performance of small-diameter fiber optic temperature sensors, but also have vast application prospects in geo-logical exploration, biological monitoring, and meteorological prediction due to their remarkable RIS and exclusive nanostructure.
Collapse
Affiliation(s)
- Shuangyan Gao
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China; (S.G.); (Y.T.)
| | - Kaihua Wei
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Hua Yang
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
| | - Yongjian Tang
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China; (S.G.); (Y.T.)
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China; (S.G.); (Y.T.)
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Chaojun Tang
- College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China;
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China;
| | - Pinghui Wu
- Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
7
|
Zhou W, Qin X, Lv M, Qiu L, Chen Z, Zhang F. Design of Plasmonic Photonic Crystal Fiber for Highly Sensitive Magnetic Field and Temperature Simultaneous Measurement. MICROMACHINES 2023; 14:1684. [PMID: 37763847 PMCID: PMC10538015 DOI: 10.3390/mi14091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
A high-sensitivity plasmonic photonic crystal fiber (PCF) sensor is designed and a metal thin film is embedded for achieving surface plasmon resonance (SPR), which can detect the magnetic field and temperature simultaneously. Within the plasmonic PCF sensor, the SPR sensing is accomplished by coating both the upper sensing channel (Ch1) and the lower sensing channel (Ch2) with gold film. In addition, the temperature-sensitive medium polydimethylsiloxane (PDMS) is chosen to fill in Ch1, allowing the sensor to respond to the temperature. The magnetic field-sensitive medium magnetic fluid (MF) is chosen to fill in Ch2, allowing this sensor to respond to the magnetic field. During these processes, this proposed SPR-PCF sensor can achieve dual-parameter sensing. The paper also investigates the electrical field characteristics, structural parameters and sensing performance using COMSOL. Finally, under the magnetic field range of 50-130 Oe, this sensor has magnetic field sensing sensitivities of 0 pm/Oe (Ch1) and 235 pm/Oe (Ch2). In addition, this paper also investigates the response of temperature. Under the temperature range of 20-40 °C, Ch1 and Ch2 have temperature sensitivities of -2000 pm/°C and 0 pm/°C, respectively. It is noteworthy that the two sensing channels respond to only a single physical parameter; this sensing performance is not common in dual-parameter sensing. Due to this sensing performance, it can be found that the magnetic field and temperature can be detected by this designed SPR-PCF sensor simultaneously without founding and calculating a sensing matrix. This sensing performance can solve the cross-sensitivity problem of magnetic field and temperature, thus reducing the measurement error. Since it can sense without a matrix, it further can solve the ill-conditioned matrix and nonlinear change in sensitivity problems in dual-parameter sensing. These excellent sensing capabilities are very important for carrying out multiparameter sensing in complicated environments.
Collapse
Affiliation(s)
- Wenjun Zhou
- Zhejiang Huayun Electric Power Engineering Design & Consultation Co., Ltd., Hangzhou 310014, China
| | - Xi Qin
- Zhejiang Huayun Electric Power Engineering Design & Consultation Co., Ltd., Hangzhou 310014, China
| | - Ming Lv
- Zhejiang Huayun Electric Power Engineering Design & Consultation Co., Ltd., Hangzhou 310014, China
| | - Lifeng Qiu
- Zhejiang Huayun Electric Power Engineering Design & Consultation Co., Ltd., Hangzhou 310014, China
| | - Zhongjiang Chen
- Zhejiang Huayun Electric Power Engineering Design & Consultation Co., Ltd., Hangzhou 310014, China
| | - Fan Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China
| |
Collapse
|
8
|
Zhu Y, Cai P, Zhang W, Meng T, Tang Y, Yi Z, Wei K, Li G, Tang B, Yi Y. Ultra-Wideband High-Efficiency Solar Absorber and Thermal Emitter Based on Semiconductor InAs Microstructures. MICROMACHINES 2023; 14:1597. [PMID: 37630133 PMCID: PMC10456737 DOI: 10.3390/mi14081597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Since the use of chemical fuels is permanently damaging the environment, the need for new energy sources is urgent for mankind. Given that solar energy is a clean and sustainable energy source, this study investigates and proposes a six-layer composite ultra-wideband high-efficiency solar absorber with an annular microstructure. It achieves this by using a combination of the properties of metamaterials and the quantum confinement effects of semiconductor materials. The substrate is W-Ti-Al2O3, and the microstructure is an annular InAs-square InAs film-Ti film combination. We used Lumerical Solutions' FDTD solution program to simulate the absorber and calculate the model's absorption, field distribution, and thermal radiation efficiency (when it is used as a thermal emitter), and further explored the physical mechanism of the model's ultra-broadband absorption. Our model has an average absorption of 95.80% in the 283-3615 nm band, 95.66% in the 280-4000 nm band, and a weighted average absorption efficiency of 95.78% under AM1.5 illumination. Meanwhile, the reflectance of the model in the 5586-20,000 nm band is all higher than 80%, with an average reflectance of 94.52%, which has a good thermal infrared suppression performance. It is 95.42% under thermal radiation at 1000 K. It has outstanding performance when employed as a thermal emitter as well. Additionally, simulation results show that the absorber has good polarization and incidence angle insensitivity. The model may be applied to photodetection, thermophotovoltaics, bio-detection, imaging, thermal ion emission, and solar water evaporation for water purification.
Collapse
Affiliation(s)
- Yanying Zhu
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (Y.Z.); (W.Z.); (Y.T.)
| | - Pinggen Cai
- Department of Applied Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Wenlong Zhang
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (Y.Z.); (W.Z.); (Y.T.)
| | - Tongyu Meng
- Leicester International Institute, Dalian University of Technology, Dalian 124221, China;
| | - Yongjian Tang
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (Y.Z.); (W.Z.); (Y.T.)
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (Y.Z.); (W.Z.); (Y.T.)
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Kaihua Wei
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gongfa Li
- Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China;
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China;
| |
Collapse
|
9
|
Chen W, Li C, Wang D, Gao S, Zhang C, Guo H, An W, Guo S, Wu G. A dual ultra-broadband switchable high-performance terahertz absorber based on hybrid graphene and vanadium dioxide. Phys Chem Chem Phys 2023. [PMID: 37466116 DOI: 10.1039/d3cp01312j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A tunable dual broadband switchable terahertz absorber based on vanadium dioxide and graphene is proposed. The tunability of graphene and the phase transition properties of vanadium dioxide are used to switch broadband absorption between low-frequency and high-frequency, as well as the absorption rate tuning function. The simulation results indicate that when vanadium dioxide is in the insulating phase and the graphene Fermi energy is 0.7 eV, the absorber achieves low-frequency broadband absorption within the range of 2.6-4.2 THz with an absorptance greater than 90%; when vanadium dioxide is in the metallic phase and the graphene Fermi energy is 0 eV, the absorber achieves high-frequency broadband absorption within the range of 4.9-10 THz with an absorptance greater than 90%. Furthermore, the absorptance can be tuned by adjusting the conductivity of vanadium dioxide or the Fermi energy of graphene. Due to the central symmetry of the proposed structure, the absorber is completely insensitive to polarization. For TE and TM polarized waves, both low and high-frequency broadband absorption are maintained over a range of incident angles from 0° to 50°. The simple structure, tunable absorption rate, insensitivity to polarization angle and incident angle properties are advantages of our proposed absorber. It has broad application prospects in adjustable filters and electromagnetic shielding.
Collapse
Affiliation(s)
- Wenya Chen
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| | - Chao Li
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| | - Dong Wang
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| | - Song Gao
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| | - Chunwei Zhang
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| | - Haijun Guo
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| | - Wei An
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| | - Shijing Guo
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| | - Guozheng Wu
- School of Information Science and Engineering, University of Jinan, 250022, China.
- Shandong Provincial Key Laboratory of Network-based Intelligent Computing, Jinan, 250022, China
| |
Collapse
|
10
|
Gupta A, Kumar V, Garg D, Alsharif MH, Jahid A. Performance Analysis of an Aperture-Coupled THz Antenna for Diagnosing Breast Cancer. MICROMACHINES 2023; 14:1281. [PMID: 37512593 PMCID: PMC10384160 DOI: 10.3390/mi14071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
The most important technique for exposing early-stage breast cancer is terahertz imaging. It aids in lowering the number of breast cancer-related fatalities and enhancing the quality of life. An essential component of developing the THz imaging system for high-quality photos is choosing the right sensor. In this article, a wideband antenna for microwave imaging of breast tissue with an operating frequency of 30 GHz (107 GHz to 137 GHz) is constructed and analyzed. An aperture-coupled antenna with an optimized ground aperture is proposed and analyzed, which made it possible to obtain better and consistent impedance matching in the wideband spectrum. The variation of backscattered signal energy in body tissue is assessed with healthy breast tissue and in the presence of malignant cells. A significant difference in energy scattering is observed for both situations. The suggested antenna's linear and stable time domain characteristics make it an appropriate component for THz imaging technology.
Collapse
Affiliation(s)
- Anupma Gupta
- Department of Interdisciplinary Courses in Engineering, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India
| | - Vipan Kumar
- Department of Electronics and Communication Engineering, Sri Sai College of Engineering and Technology, Pathankot 145001, India
| | - Dinesh Garg
- Department of Computer Science Engineering, Sri Sai College of Engineering and Technology, Pathankot 145001, India
| | - Mohammed H Alsharif
- Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Abu Jahid
- School of Electrical Engineering and Computer Science, University of Ottawa, 25 Templeton St., Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
11
|
Chen H, Li W, Zhu S, Hou A, Liu T, Xu J, Zhang X, Yi Z, Yi Y, Dai B. Study on the Thermal Distribution Characteristics of a Molten Quartz Ceramic Surface under Quartz Lamp Radiation. MICROMACHINES 2023; 14:1231. [PMID: 37374817 DOI: 10.3390/mi14061231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
More and more researchers are studying the heat transfer performance of aeronautical materials at high temperatures. In this paper, we use a quartz lamp to irradiate fused quartz ceramic materials, and the sample surface temperature and heat flux distribution were obtained at a heating power of 45~150 kW. Furthermore, the heat transfer properties of the material were analyzed using a finite element method and the effect of surface heat flow on the internal temperature field was investigated. The results show that the fiber skeleton structure has a significant effect on the thermal insulation performance of fiber-reinforced fused quartz ceramics and the longitudinal heat transfer along the rod fiber skeleton is slower. As time passes, the surface temperature distribution tends to stability and reaches an equilibrium state. The surface temperature of fused quartz ceramic increases with the increase in the radiant heat flux of the quartz lamp array. When the input power is 5 kW, the maximum surface temperature of the sample can reach 1153 °C. However, the non-uniformity of the sample surface temperature also increases, reaching a maximum uncertainty of 12.28%. The research in this paper provides important theoretical guidance for the heat insulation design of ultra-high acoustic velocity aircraft.
Collapse
Affiliation(s)
- Hao Chen
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Li
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shimin Zhu
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Aiqiang Hou
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Liu
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiangshan Xu
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaowei Zhang
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zao Yi
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| | - Bo Dai
- The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, School of Information Engineering, School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
12
|
Wu F, Shi P, Yi Z, Li H, Yi Y. Ultra-Broadband Solar Absorber and High-Efficiency Thermal Emitter from UV to Mid-Infrared Spectrum. MICROMACHINES 2023; 14:mi14050985. [PMID: 37241609 DOI: 10.3390/mi14050985] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Solar energy is currently a very popular energy source because it is both clean and renewable. As a result, one of the main areas of research now is the investigation of solar absorbers with broad spectrum and high absorption efficiency. In this study, we create an absorber by superimposing three periodic Ti-Al2O3-Ti discs on a W-Ti-Al2O3 composite film structure. We evaluated the incident angle, structural components, and electromagnetic field distribution using the finite difference in time domain (FDTD) method in order to investigate the physical process by which the model achieves broadband absorption. We find that distinct wavelengths of tuned or resonant absorption may be produced by the Ti disk array and Al2O3 through near-field coupling, cavity-mode coupling, and plasmon resonance, all of which can effectively widen the absorption bandwidth. The findings indicate that the solar absorber's average absorption efficiency can range from 95.8% to 96% over the entire band range of 200 to 3100 nm, with the absorption bandwidth of 2811 nm (244-3055 nm) having the highest absorption rate. Additionally, the absorber only contains tungsten (W), titanium (Ti), and alumina (Al2O3), three materials with high melting points, which offers a strong assurance for the absorber's thermal stability. It also has a very high thermal radiation intensity, reaching a high radiation efficiency of 94.4% at 1000 K, and a weighted average absorption efficiency of 98.3% at AM1.5. Additionally, the incidence angle insensitivity of our suggested solar absorber is good (0-60°) and polarization independence is good (0-90°). These benefits enable a wide range of solar thermal photovoltaic applications for our absorber and offer numerous design options for the ideal absorber.
Collapse
Affiliation(s)
- Fuyan Wu
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Pengcheng Shi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Hailiang Li
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Lai R, Shi P, Yi Z, Li H, Yi Y. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene. MICROMACHINES 2023; 14:mi14050953. [PMID: 37241576 DOI: 10.3390/mi14050953] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
This paper introduces a novel metamaterial absorber based on surface plasmon resonance (SPR). The absorber is capable of triple-mode perfect absorption, polarization independence, incident angle insensitivity, tunability, high sensitivity, and a high figure of merit (FOM). The structure of the absorber consists of a sandwiched stack: a top layer of single-layer graphene array with an open-ended prohibited sign type (OPST) pattern, a middle layer of thicker SiO2, and a bottom layer of the gold metal mirror (Au). The simulation of COMSOL software suggests it achieves perfect absorption at frequencies of fI = 4.04 THz, fII = 6.76 THz, and fIII = 9.40 THz, with absorption peaks of 99.404%, 99.353%, and 99.146%, respectively. These three resonant frequencies and corresponding absorption rates can be regulated by controlling the patterned graphene's geometric parameters or just adjusting the Fermi level (EF). Additionally, when the incident angle changes between 0~50°, the absorption peaks still reach 99% regardless of the kind of polarization. Finally, to test its refractive index sensing performance, this paper calculates the results of the structure under different environments which demonstrate maximum sensitivities in three modes: SI = 0.875 THz/RIU, SII = 1.250 THz/RIU, and SIII = 2.000 THz/RIU. The FOM can reach FOMI = 3.74 RIU-1, FOMII = 6.08 RIU-1, and FOMIII = 9.58 RIU-1. In conclusion, we provide a new approach for designing a tunable multi-band SPR metamaterial absorber with potential applications in photodetectors, active optoelectronic devices, and chemical sensors.
Collapse
Affiliation(s)
- Runing Lai
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Pengcheng Shi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Hailiang Li
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Qi H, Tang B. An active tunable terahertz functional metamaterial based on hybrid-graphene vanadium dioxide. Phys Chem Chem Phys 2023; 25:7825-7831. [PMID: 36857684 DOI: 10.1039/d3cp00092c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In this paper, we propose a switchable and tunable functional metamaterial device based on hybrid graphene-vanadium dioxide (VO2). Using the properties of the metal-insulator transition in VO2, the proposed metamaterials can enable switching between tunable circular dichroism (CD) and dual-band perfect absorption in the terahertz region. When VO2 is in the insulator state, a polarization-selective single-band perfect absorption can be achieved for circularly polarized waves, thus resulting in a strong CD response with a maximum value of 0.84. When VO2 acts as a metal, there is a tunable dual-band perfect absorption for the designed metamaterial device under the illumination of x-polarization waves. The operation mechanism behind the phenomena can be explained by utilizing the electric field distribution and the coupled mode theory. Moreover, the influences of the Fermi energy of graphene and geometrical parameters on the CD and absorption spectra are discussed in detail. Our proposed switchable and tunable metamaterial can provide a platform for designing versatile functional devices in the terahertz region.
Collapse
Affiliation(s)
- Haonan Qi
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
15
|
Reconfigurable broadband metasurfaces with nearly perfect absorption and high efficiency polarization conversion in THz range. Sci Rep 2022; 12:18779. [PMID: 36335211 PMCID: PMC9637145 DOI: 10.1038/s41598-022-23536-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Reconfigurable metasurfaces (RMSs) that enable the switching function of absorption and polarization conversion have attracted increasing attention. However, the design of RMSs to achieve wideband and high efficiency for both absorption and polarization conversion functions simultaneously remains a great challenge. Here, we propose the design of a RMS structure with a high-efficiency cross-polarization conversion and nearly perfect absorption. The reconfiguration between different functions of polarization conversion and absorption is obtained based on the reversible insulator-to-metal phase transition of Vanadium dioxide (VO[Formula: see text]). When the VO[Formula: see text] is in insulator state, the RMS realizes the cross-polarization conversion function in the wideband of 1.04-3.75 THz with a relative bandwidth up to 113 [Formula: see text] due to the multi-resonant modes of electric and magnetic resonances. Meanwhile, the nearly-perfect absorption is achieved in the range of 1.36-3.38 THz with the corresponding relative bandwidth up to 85 [Formula: see text] for the VO[Formula: see text] in metallic state. Specially, the wideband and high-efficiency performance of these functionalities is maintained for a wide angle incidence. The capability of bi-functional switch and integration with polarization conversion and absorption in a single metasurface structure endowed with both wideband and high-efficiency characteristics for a wide incident angle is very promising for emerging RMS devices in the terahertz region.
Collapse
|
16
|
Cao M, Wang J, Yuen MMF, Yan D. Realization of Multifunctional Metamaterial Structure Based on the Combination of Vanadium Dioxide and Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2883. [PMID: 36014748 PMCID: PMC9413590 DOI: 10.3390/nano12162883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Combining tunable properties and various functionalities into a single metamaterial structure has become a novel research hotspot and can be used to tackle great challenges. The multifunctional metamaterial structure that combines absorption, linear-to-circular (LTC) polarization conversion, filtering and switching functions into a single metamaterial device was designed and investigated in this study. The switching of different functions can be achieved based on the phase transition of vanadium dioxide (VO2) and change of graphene chemical potential. When VO2 is in a metal state, the multi-frequency absorption and LTC polarization conversion can be achieved with different chemical potentials. When VO2 is in the insulator state and the polarization angle of incident wave is 45°, the device can be used to select or isolate the incident waves with different polarization states in the frequency region of 1.2-1.8 THz. Furthermore, when the chemical potentials are 0.05 eV and 1.2 eV, the corresponding transmissions of the TE-polarized wave demonstrate the opposite results, realizing the switching functions in the frequency region of 0.88-1.34 THz. In the frequency region above 2 THz, the multi-frequency rejection filter can be achieved. The designed switchable multifunctional metamaterial device can be widely implemented in radar monitoring and communication systems.
Collapse
Affiliation(s)
- Mingxuan Cao
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Junchao Wang
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Matthew M. F. Yuen
- Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Dexian Yan
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
17
|
Qiu Y, Yan DX, Feng QY, Li XJ, Zhang L, Qiu GH, Li JN. Vanadium dioxide-assisted switchable multifunctional metamaterial structure. OPTICS EXPRESS 2022; 30:26544-26556. [PMID: 36236843 DOI: 10.1364/oe.465062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
A multifunctional design based on vanadium dioxide (VO2) metamaterial structure is proposed. Broadband absorption, linear-to-linear (LTL) polarization conversion, linear-to-circular (LTC) polarization conversion, and total reflection can be achieved based on the insulator-to-metal transition (IMT) of VO2. When the VO2 is in the metallic state, the multifunctional structure can be used as a broadband absorber. The results show that the absorption rate exceeds 90% in the frequency band of 2.17 - 4.94 THz, and the bandwidth ratio is 77.8%. When VO2 is in the insulator state, for the incident terahertz waves with a polarization angle of 45°, the structure works as a polarization converter. In this case, LTC polarization conversion can be obtained in the frequency band of 0.1 - 3.5 THz, and LTL polarization conversion also can be obtained in the frequency band of 3.5 - 6 THz, especially in the 3.755 - 4.856 THz band that the polarization conversion rate is over 90%. For the incident terahertz waves with a polarization angle of 0°, the metamaterial structure can be used as a total reflector. Additionally, impacts of geometrical parameters, incidence angle and polarization angle on the operating characteristics have also been investigated. The designed switchable multifunctional metasurfaces are promising for a wide range of applications in advanced terahertz research and smart applications.
Collapse
|