1
|
Chen C, Liu J, Liu Y, Peng X. Simulation investigation of the spontaneous motion behaviors of underwater oil droplets on a conical surface. SOFT MATTER 2022; 18:9172-9180. [PMID: 36444757 DOI: 10.1039/d2sm00937d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A conical surface can realize the spontaneous transportation of micro-sized oil droplets in an aqueous environment without energy input, exhibiting great potential for applications in microfluidics, chemical micro-reactors, water remediation, etc. However, the precise manipulation of an oil droplet on a cone is still very challenging because the dynamic behavior of a droplet on a cone is not fully understood. Herein, the dynamic behavior of oil droplets on a cone is quantitively studied via numerical simulations, and the effects of wettability, apex angle, and droplet size on the droplet's dynamic behavior are systematically analyzed. The results show that the moving velocity and transport distance of the droplet on the cone are highly related to the droplet shape on the cone. It was found that a clamshell-shaped droplet moves faster than a barrel-shaped droplet. Besides, the clamshell-shaped droplet with a larger size, on the cone with a smaller apex angle and smaller contact angle tends to obtain a faster moving speed and a longer transportation distance. The droplet shape adopted on the cone was determined by the cone wettability and the size of the droplet relative to the local curvature of the cone. It was found that the oil droplet tends to form a barrel shape on the cone with a highly oleophilic and small apex angle, and tends to form a clamshell shape on cones with a highly oleophobic and large apex angle. In addition, the droplet might transit from a barrel shape to a clamshell shape when it moves from the cone tip to the cone base, and the trigger time of the transit is negatively correlated with the contact angle and apex angle of the cone. This work provides a microscale understanding of the dynamic behavior of an underwater oil droplet on a cone, and also offers theoretical guidance for manipulating the behavior of a droplet on a cone and for the rational design of cone surfaces for spontaneous droplet transport and droplet collection.
Collapse
Affiliation(s)
- Chaolang Chen
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jian Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangkai Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xuqiao Peng
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Zan R, Li Y, Tao S, Li G, Wu R, Liu D, Peng D, Liu Y, Fei L. Spray-Coated Superhydrophobic Overlayer with Photothermal and Electrothermal Functionalities for All-Weather De/anti-icing Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13584-13593. [PMID: 36301846 DOI: 10.1021/acs.langmuir.2c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-performance de/anti-icing overlayers which can be deposited on diverse surfaces offer great potential in many industrial settings and daily life, yet a versatile overlayer applicable to all-weather conditions (high humidity, low temperature, raining, snowing, etc.) is in high demand for practical applications. This study presents the fabrication and application of a superhydrophobic overlayer with a bioinspired hierarchical surface which additionally possesses photothermal and electrothermal functionalities, so it can operate as a de/anti-icing layer in extreme environments. The overlayer, with a papilla-like microstructure similar to that of a lotus leaf, features polydopamine-decorated layered basic zinc acetate microparticles distributed in the framework of multiwalled carbon nanotubes. Specifically, the overlayer is superhydrophobic, and its capability of suppressing the condensation of water droplets and growth of ice crystals is verified by both in situ environmental scanning electron microscopy observations and freezing experiments. Moreover, the overlayer can be warmed up to 74 and 105 °C under the excitation of sunlight and direct current bias, respectively, which is sufficiently high for deicing in severe weather. It is worth mentioning that the overlayer is produced by a spray-coating technique; therefore, it is suitable for large-scale deployment on arbitrary substrate materials. The findings provide insights into a new strategy for engineering multifunctional overlayers and can lead to expanding applications of composite coatings.
Collapse
Affiliation(s)
- Ruhao Zan
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanjun Li
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shuqiang Tao
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Guowei Li
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ronghui Wu
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Dingjun Liu
- Institute of Advanced Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Donggen Peng
- School of Infrastructure Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yong Liu
- School of Advanced Manufacturing, Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Linfeng Fei
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|