1
|
Kazmierczak N, Xia KT, Sutcliffe E, Aalto JP, Hadt RG. A Spectrochemical Series for Electron Spin Relaxation. J Am Chem Soc 2025; 147:2849-2859. [PMID: 39778145 PMCID: PMC11760167 DOI: 10.1021/jacs.4c16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Controlling the rate of electron spin relaxation in paramagnetic molecules is essential for contemporary applications in molecular magnetism and quantum information science. However, the physical mechanisms of spin relaxation remain incompletely understood, and new spectroscopic observables play an important role in evaluating spin dynamics mechanisms and structure-property relationships. Here, we use cryogenic magnetic circular dichroism (MCD) spectroscopy and pulse electron paramagnetic resonance (EPR) in tandem to examine the impact of ligand field (d-d) excited states on spin relaxation rates. We employ a broad scope of square-planar Cu(II) compounds with varying ligand field strength, including CuS4, CuN4, CuN2O2, and CuO4 first coordination spheres. An unexpectedly strong correlation exists between spin relaxation rates and the average d-d excitation energy (R2 = 0.97). The relaxation rate trends as the inverse 11th power of the excited-state energies, whereas simplified theoretical models predict only an inverse second power dependence. These experimental results directly implicate ligand field excited states as playing a critical role in the ground-state spin relaxation mechanism. Furthermore, ligand field strength is revealed to be a particularly powerful design principle for spin dynamics, enabling formation of a spectrochemical series for spin relaxation.
Collapse
Affiliation(s)
| | | | - Erica Sutcliffe
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan P. Aalto
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Kazmierczak N, Oyala PH, Hadt RG. Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation. ACS CENTRAL SCIENCE 2024; 10:2353-2362. [PMID: 39735309 PMCID: PMC11672536 DOI: 10.1021/acscentsci.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024]
Abstract
Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates (T 1) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix. For randomly oriented powder samples, spin relaxation anisotropy changes dramatically with temperature, delineating multiple regimes of relaxation processes for each Cu(II) molecule studied. We show that traditional T 1 fitting approaches cannot reliably extract this information. Single-crystal T 1 anisotropy experiments reveal a surprising change in spin relaxation symmetry between these two regimes. We interpret this switch through the concept of a spin relaxation tensor, enabling discrimination between delocalized lattice phonons and localized molecular vibrations in the two relaxation regimes. Variable-temperature T 1 anisotropy thus provides a unique spectroscopic method to interrogate the character of nuclear motions causing spin relaxation and the loss of quantum information.
Collapse
Affiliation(s)
- Nathanael
P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Paul H. Oyala
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Ishizaki T, Asada M, Nakamura T, Ozeki T. Spin coherence phenomena of an S = 1/2 copper(II) system in a polyoxometalate with a less-abundant nuclear spin. Dalton Trans 2024. [PMID: 39687992 DOI: 10.1039/d4dt02832e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The spin coherence phenomena of a system consisting of a mononuclear 3d transition metal S = 1/2 centre embedded in a polyoxometalate with low nuclear-spin abundance, [(n-C4H9)4N]4H2[SiW11O39Cu0.01Zn0.99], have been revealed for the first time. Variable-temperature Hahn-echo experiments using the pulsed electron spin resonance technique showed that its coherence lifetime remains at the submicrosecond level even above 100 K.
Collapse
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Mizue Asada
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | | | - Tomoji Ozeki
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
4
|
Bombaci M, Lo Presti F, Pellegrino AL, Lippi M, Rossi P, Tacconi L, Sorace L, Malandrino G. Bifunctional heterobimetallic 3d-4f [Co(II)-RE, RE = Dy, Eu, and Y] ionic complexes: modulation of the magnetic-luminescence behaviour. Dalton Trans 2024; 54:274-289. [PMID: 39535900 DOI: 10.1039/d4dt01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work reports the engineering and functional properties of an emerging class of heterobimetallic 3d-4f ionic complexes designed with cobalt and rare-earth (RE) metals. We present a comprehensive examination of the structural, magnetic, optical, and thermal properties of the heterobimetallic ionic complexes with the general formula [Co(hfa)3]-[RE(hfa)2tetraglyme]+ (RE = Dy, Eu, and Y), where the metal centres are coordinated by hexafluoroacetylacetonate (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), β-diketone and tetraglyme (2,5,8,11,14-pentaoxapentadecane) polyether. Structural analysis reveals an octahedral coordination geometry enveloping the cobalt(II) centre, characterized by inherent symmetry properties consistent across the derivatives, while a capped square-antiprism coordination polyhedron is observed for the RE ions. Electron paramagnetic resonance (EPR) spectroscopy confirms the constancy of the electronic structure of the cobalt(II) moiety and the significant contribution of the lanthanide ions to the magnetic properties of the compounds. The non-trivial single-ion magnetic properties of cobalt(II), dysprosium(III), and europium(III) centres, and the effect of their interactions are investigated by a detailed static and dynamic magnetic susceptibility study. Moreover, optical analyses have been carried out showing the π-π* intraligand (IL) transition of the β-diketonate ligand and the d-d cobalt(II) transitions. Luminescence characterization of dysprosium(III) and europium(III) derivatives exhibits their characteristic emission bands, indicative of the unique photophysical properties conferred by the lanthanide ions. Thermal studies using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) reveal good thermal stability and volatility properties, underscoring the interesting nature of these ionic complexes for potential deposition on suitable substrates. In summary, these heterobimetallic complexes show intriguing optical and magnetic properties with potential implications across diverse scientific disciplines, including molecular magnetism, optoelectronics, and materials science.
Collapse
Affiliation(s)
- Matteo Bombaci
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Francesca Lo Presti
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Anna L Pellegrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Martina Lippi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Patrizia Rossi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Leonardo Tacconi
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Lorenzo Sorace
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Graziella Malandrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
5
|
Pohle MH, Lohmiller T, Böhme M, Rams M, Ziegenbalg S, Görls H, Schnegg A, Plass W. THz-EPR-based Magneto-Structural Correlations for Cobalt(II) Single-Ion Magnets With Bis-Chelate Coordination. Chemistry 2024; 30:e202401545. [PMID: 39136581 DOI: 10.1002/chem.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 10/18/2024]
Abstract
New cobalt(II)-based complexes with [N2O2] coordination formed by two bis-chelate ligands were synthesized and characterized by a multi-technique approach. The complexes possess an easy-axis anisotropy (D<0) and magnetic measurements show a field-induced slow relaxation of magnetization. The spin-reversal barriers, i. e., the splitting of the two lowest Kramers doublets (UZFS), have been measured by THz-EPR spectroscopy, which allows to distinguish the two crystallographically independent species present in one of the complexes. Based on these experimental UZFS energies together with those for related complexes reported in literature, it was possible to establish magneto-structural correlations. UZFS linearly depends on the elongation parameter ϵT of the (pseudo-)tetrahedral coordination, which is given by the ratio between the average obtuse and acute angles at the cobalt(II) ion, while UZFS was found to be virtually independent of the twist angle of the chelate planes. With increasing deviation from the orthogonality of the latter, the rhombicity (|E/D|) increases.
Collapse
Affiliation(s)
- Maximilian H Pohle
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Thomas Lohmiller
- EPR4 Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489, Berlin, Germany
- Current address: Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
6
|
Yamauchi A, Yanai N. Toward Quantum Noses: Quantum Chemosensing Based on Molecular Qubits in Metal-Organic Frameworks. Acc Chem Res 2024; 57:2963-2972. [PMID: 39324781 DOI: 10.1021/acs.accounts.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
ConspectusQuantum sensing leverages quantum properties to enhance the sensitivity and resolution of sensors beyond their classical sensing limits. Quantum sensors, such as diamond defect centers, have been developed to detect various physical properties, including magnetic fields and temperature. However, the spins of defects are buried within dense solids, making it difficult for them to strongly interact with molecular analytes. Therefore, nanoporous materials have been implemented in combination with electron spin center of molecules (molecular qubits) to produce quantum chemosensors that can distinguish various chemical substances. Molecular qubits have a uniform structure, and their properties can be precisely controlled by changing their chemical structure. Metal-organic frameworks (MOFs) are suitable for supporting molecular qubits because of their high porosity, structural regularity, and designability. Molecular qubits can be inserted in the MOF structures or adsorbed as guest molecules. The qubits in the MOF can interact with analytes upon exposure, providing an effective and tunable sensing platform.In this Account, we review the recent progress in qubit-MOF hybrids toward the realization of room-temperature quantum chemosensing. Molecular qubits can be introduced in controlled concentrations at targeted positions by exploiting metal ions, ligands, or guests that compose the MOF. Heavy metal-free organic chromophores have several outstanding features as molecular qubits; namely, they can be initialized by light irradiation and exhibit relatively long coherence times of submicroseconds to microseconds, even at room temperature. One detection method involves monitoring the hyperfine interaction between the electron spins of the molecular qubits and the nuclear spins of the analyte incorporated in the pore. There is also an indirect detection method that relies on the motional change in molecular qubits. If the motion of the molecular qubit changes with the adsorption of the analyte, it can be detected as a change in the spin relaxation process. This mechanism is unique to qubits exposed in nanopores, not observed in conventional qubits embedded in dense solids.By maximizing the guest recognition ability of MOFs and the environmental sensitivity of qubits, quantum chemosensing that recognizes specific chemical species in a highly selective and sensitive manner may be possible. It is difficult to distinguish between diverse chemical species by employing only one combination of MOF and qubit, but by creating arrays of different qubit-MOF hybrids, it would become possible to distinguish between various analytes based on pattern recognition. Inspired by the human olfactory mechanism, we propose the use of multiple qubit-MOF hybrids and pattern recognition to identify specific molecules. This system represents a quantum version of olfaction, and thus we propose the concept of a "quantum nose." Quantum noses may be used to recognize biometabolites and biomarkers and enable new medical diagnostic technologies and olfactory digitization.
Collapse
Affiliation(s)
- Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
7
|
Wang M, Han Z, Garcia Y, Cheng P. Six-Coordinated Co II Single-Molecule Magnets: Synthetic Strategy, Structure and Magnetic Properties. Chemphyschem 2024; 25:e202400396. [PMID: 38889310 DOI: 10.1002/cphc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Yamauchi A, Fujiwara S, Kimizuka N, Asada M, Fujiwara M, Nakamura T, Pirillo J, Hijikata Y, Yanai N. Modulation of triplet quantum coherence by guest-induced structural changes in a flexible metal-organic framework. Nat Commun 2024; 15:7622. [PMID: 39231937 PMCID: PMC11375101 DOI: 10.1038/s41467-024-51715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Quantum sensing has the potential to improve the sensitivity of chemical sensing by exploiting the characteristics of qubits, which are sensitive to the external environment. Modulation of quantum coherence by target analytes can be a useful tool for quantum sensing. Using molecular qubits is expected to provide excellent sensitivity due to the proximity of the sensor to the target analyte. However, many molecular qubits are used at cryogenic temperatures, and how to make molecular qubits respond to specific analytes remains unclear. Here, we propose a material design in which the coherence time changes in response to a variety of analytes at room temperature. We used the photoexcited triplet, which can be initialized at room temperature, as qubits and introduce them to a metal-organic framework that can flexibly change its pore structure in response to guest adsorption. By changing the local molecular density around the triplet qubits by adsorption of a specific analyte, the mobility of the triplet qubit can be changed, and the coherence time can be made responsive.
Collapse
Affiliation(s)
- Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Saiya Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
- Center for Molecular Systems (CMS), Kyushu University, Fukuoka, Japan
| | - Mizue Asada
- Institute for Molecular Science, Okazaki, Japan
| | | | | | - Jenny Pirillo
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuh Hijikata
- Research Center for Net Zero Carbon Society, Institute of Innovation for Future Society, Nagoya university, Nagoya, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
- Center for Molecular Systems (CMS), Kyushu University, Fukuoka, Japan.
- FOREST, CREST, JST, Saitama, Japan.
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 113-0033, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Pajuelo-Corral O, Contreras MC, Rojas S, Choquesillo-Lazarte D, Seco JM, Rodríguez-Diéguez A, Salinas-Castillo A, Cepeda J, Zabala-Lekuona A, Vitorica-Yrezabal IJ. Cerium(III) and 5-methylisophthalate-based MOFs with slow relaxation of magnetization and photoluminescence emission. Dalton Trans 2024; 53:11750-11761. [PMID: 38938108 DOI: 10.1039/d4dt00401a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Two novel Ce(III) metal organic frameworks (MOFs) with formulas [Ce(5Meip)(H-5Meip)]nGR-MOF-17 and [CeCl(5Meip)(DMF)]nGR-MOF-18 (5Meip = 5-methylisophthalate, DMF = N,N-dimethylformamide) have been synthesized, forming 3-dimensional frameworks. Magnetic measurements show that both compounds present field-induced slow magnetic relaxation under a small applied dc field. For GR-MOF-17, the temperature dependence of relaxation times is best described by a Raman mechanism, whereas for GR-MOF-18, relaxation occurs through a combination of Raman and local-mode pathways. Moreover, when avoiding short Ce⋯Ce interactions by magnetic dilution in GR-MOF-17@La and GR-MOF-18@La, only the local-mode mechanism is responsible for magnetic relaxation. Photophysical studies show the occurrence of ligand-centred luminescence in both compounds and phosphorescence emission at low temperature for GR-MOF-17.
Collapse
Affiliation(s)
- Oier Pajuelo-Corral
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain.
| | - MCarmen Contreras
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.
| | - Sara Rojas
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalograficos, IACT, CSIC-Universidad de Granada, Av. De las palmeras 4, Armilla, Granada E-18100, Spain
| | - José M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain.
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.
| | - Alfonso Salinas-Castillo
- Departamento de Química Analítica, Facultad de Humanidades, Universidad de Granada, 18071, Granada, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain.
| | - Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain.
| | - Iñigo J Vitorica-Yrezabal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
10
|
Inoue M, Yamauchi A, Parmar B, Orihashi K, Singh M, Asada M, Nakamura T, Yanai N. Guest-responsive coherence time of radical qubits in a metal-organic framework. Chem Commun (Camb) 2024; 60:6130-6133. [PMID: 38770580 DOI: 10.1039/d4cc01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal-organic frameworks (MOFs) integrated with molecular qubits are promising for quantum sensing. In this study, a new UiO-type MOF with a 5,12-diazatetracene (DAT)-containing ligand is synthesized, and the radicals generated in the MOF exhibit high stability and a relatively long coherence time (T2) responsive to the introduction of various guest molecules.
Collapse
Affiliation(s)
- Miku Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Bhavesh Parmar
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kana Orihashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Manpreet Singh
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mizue Asada
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Tubau À, Gómez-Coca S, Speed S, Font-Bardía M, Vicente R. New series of mononuclear β-diketonate cerium(III) field induced single-molecule magnets. Dalton Trans 2024; 53:9387-9405. [PMID: 38757803 DOI: 10.1039/d4dt00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Five new β-diketonate Ce3+ mononuclear complexes, [Ce(Btfa)3(H2O)2] (1), [Ce(Btfa)3(phen)] (2), [Ce(Btfa)3(bipy)] (3), [Ce(Btfa)3(terpy)] (4) and [Ce(Btfa)3(bathophen)(DMF)] (5), where Btfa- = 4,4,4-trifluoro-1-phenyl-1,3-butanedionate, phen = 1,10-phenanthroline, bipy = 2,2'-bipyridyl, terpy = 2,2':6',2''-terpyridine and bathophen = 4,7-diphenyl-1,10-phenanthroline, have been synthesized and structurally characterized through X-ray diffraction of single crystals. The central Ce3+ atom displays a coordination number of 8 for 1, 2 and 3 and of 9 for 4 and 5. Under a 0 T external magnetic field, none of the given compounds exhibits single molecule magnet (SMM) behaviour. However, a small magnetic field, between 0.02 and 0.1 T, is enough for all the compounds to exhibit slow relaxation of the magnetization. A comprehensive magnetic analysis, with experimental magnetic data and ab initio calculations, was undertaken for all the complexes, and the study highlights the significance of the different spin relaxation mechanisms that must be considered for a Ce3+ lanthanide ion.
Collapse
Affiliation(s)
- Ànnia Tubau
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
- Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Saskia Speed
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Mercè Font-Bardía
- Departament de Mineralogia, Cristal lografia i Dipòsits Minerals and Unitat de Difracció de R-X. Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ramon Vicente
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
12
|
Castellanos E, Benner F, Demir S. Linear, Electron-Rich Erbium Single-Molecule Magnet with Dibenzocyclooctatetraene Ligands. Inorg Chem 2024; 63:9888-9898. [PMID: 38738864 PMCID: PMC11134505 DOI: 10.1021/acs.inorgchem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Judicious design of ligand scaffolds to highly anisotropic lanthanide ions led to substantial advances in molecular spintronics and single-molecule magnetism. Erbium-based single-molecule magnets (SMMs) are rare, which is attributed to the prolate-shaped ErIII ion requiring an equatorial ligand field for enhancing its single-ion magnetic anisotropy. Here, we present an electron-rich mononuclear Er SMM, [K(crypt-222)][Er(dbCOT)2], 1 (where dbCOT = dibenzocyclooctatetraene), that was obtained from a salt metathesis reaction of ErCl3 and K2dbCOT. The dipotassium salt, K2dbCOT, was generated through a two-electron reduction of the bare dbCOT0 ligand employing potassium graphite and was crystallized from DME to give the new solvated complex, [K(DME)]2[dbCOT]n, 2. 1 was analyzed through crystallography, electrochemistry, spectroscopy, magnetometry, and CASSCF calculations. The structure of 1 consists of an anionic metallocene complex featuring a linear (180.0°) geometry with an ErIII ion sandwiched between dianionic dbCOT ligands and an outer-sphere K+ ion encapsulated in 2.2.2-cryptand. Two pronounced redox events at negative potentials allude to the formation of a trianionic erbocene complex, [Er(dbCOT)2]3-, on the electrochemical time scale. 1 shows slow magnetic relaxation with an effective spin-reversal barrier of Ueff = 114(2) cm-1, which is close in magnitude to the calculated energies of the first and second excited states of 96.9 and 109.13 cm-1, respectively. 1 exhibits waist-constricted hysteresis loops below 4 K and constitutes the first example of an erbocene-SMM bearing fused aromatic rings to the central COT ligand. Notably, 1 comprises the largest COT scaffold implemented in erbocene SMMs, yielding the most electron-rich homoleptic erbium metallocene SMM.
Collapse
Affiliation(s)
- Ernesto Castellanos
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Orihashi K, Yamauchi A, Fujiwara S, Asada M, Nakamura T, Ka-Ho Hui J, Kimizuka N, Tateishi K, Uesaka T, Yanai N. Spin-Polarized Radicals with Extremely Long Spin-Lattice Relaxation Time at Room Temperature in a Metal-Organic Framework. J Am Chem Soc 2023; 145:27650-27656. [PMID: 38079364 DOI: 10.1021/jacs.3c09563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The generation of spin polarization is key in quantum information science and dynamic nuclear polarization. Polarized electron spins with long spin-lattice relaxation times (T1) at room temperature are important for these applications but have been difficult to achieve. We report the realization of spin-polarized radicals with extremely long T1 at room temperature in a metal-organic framework (MOF) in which azaacene chromophores are densely integrated. Persistent radicals are generated in the MOF by charge separation after photoexcitation. Spin polarization of a triplet generated by photoexcitation is successfully transferred to the persistent radicals. Pulse electron spin resonance measurements reveal that the T1 of the polarized radical in the MOF is as long as 214 μs with a relatively long spin-spin relaxation time T2 of the radicals of up to 0.98 μs at room temperature. The achievement of extremely long spin polarization in MOFs with nanopores accessible to guest molecules will be an important cornerstone for future highly sensitive quantum sensing and efficient dynamic nuclear polarization.
Collapse
Affiliation(s)
- Kana Orihashi
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Saiya Fujiwara
- RIKEN Center for Emergent Matter Science, Riken, Wako, Saitama 351-0198, Japan
| | - Mizue Asada
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Joseph Ka-Ho Hui
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Shao D, Wan Y, Yang J, Ruan Z, Zhu J, Shi L. Assembly of dysprosium(III) cubanes in a metal-organic framework with an ecu topology and slow magnetic relaxation. Dalton Trans 2023; 52:17114-17118. [PMID: 37987159 DOI: 10.1039/d3dt03137c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A dysprosium(III) metal-organic framework constructed using dysprosium(III) cubanes as secondary building units has been reported to exhibit field-induced slow magnetic relaxation behavior and an unprecedented ecu topology, which is the first example of an 8-connected Ln-cubane-based framework material and a rare Dy4-MOF showing slow magnetic relaxation.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Yi Wan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Junlun Zhu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
15
|
Wu DQ, Kumari K, Wan Y, Gao X, Guo M, Liu G, Shao D, Zhai B, Singh SK. Binuclear cobalt(II) and two-dimensional manganese(II) coordination compounds self-assembled by mixed bipyridine-tetracarboxylic ligands with single-ion magnet properties. Dalton Trans 2023; 52:16197-16205. [PMID: 37873572 DOI: 10.1039/d3dt03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A cobalt(II) complex and manganese(II) coordination polymer, formulated as [Co2(H2btca)(mbpy)4][H2btca]·4H2O (1) and {Mn2(btca)(mbpy)2(H2O)2}n (2) (H4btca = 1,2,4,5-benzenetetracarboxylic acid; mbpy = 4,4'-dimethyl-2,2'-bipyridyl), constructed by mixed bipyridine-tetracarboxylic ligands were synthesized and characterized. Single-crystal structural analyses reveal that compound 1 is a discrete neutral binuclear molecule, while compound 2 is a two-dimensional (2D) coordination polymer. The metal ions in these compounds are well isolated, with an intramolecular Co2+⋯Co2+ distance of 9.170 Å for 1 and Mn2+⋯Mn2+ separation of 10.984 and 11.164 Å for 2 due to the bulk tetracarboxylic linker. This isolation gives rise to a single-ion magnetism origin of the compounds. Magnetic studies reveal a large zero-field splitting parameter D of 82.6 cm-1 for 1, while a very small D of 0.42 cm-1 was observed for 2. Interestingly, dynamic ac magnetic measurements exhibited slow magnetic relaxation under the external dc field of the two compounds, revealing the field-supported single-ion magnet (SIM) of 1 and 2. The detailed theoretical calculations were further applied to understand the electronic structures, magnetic anisotropy, and relaxation dynamics in 1 and 2. Combined with our recently reported compound (Eur. J. Inorg. Chem., 2022, e202200354), the foregoing results provide not only a rare binuclear cobalt(II) SIM and the first 2D manganese(II) SIM coordination polymer but also a bipyridine-tetracarboxylic ligand approach toward novel SIMs.
Collapse
Affiliation(s)
- Dong-Qing Wu
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Yi Wan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Xueling Gao
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Mengxi Guo
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Bin Zhai
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| |
Collapse
|
16
|
Jiang L, Chi J, Wang J, Fang S, Peng T, Quan G, Liu D, Huang Z, Lu C. Superparamagnetic Nanocrystals Clustered Using Poly(ethylene glycol)-Crosslinked Amphiphilic Copolymers for the Diagnosis of Liver Cancer. Pharmaceutics 2023; 15:2205. [PMID: 37765174 PMCID: PMC10535018 DOI: 10.3390/pharmaceutics15092205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Superparamagnetic iron oxide (SPIO) nanocrystals have been extensively studied as theranostic nanoparticles to increase transverse (T2) relaxivity and enhance contrast in magnetic resonance imaging (MRI). To improve the blood circulation time and enhance the diagnostic sensitivity of MRI contrast agents, we developed an amphiphilic copolymer, PCPZL, to effectively encapsulate SPIO nanocrystals. PCPZL was synthesized by crosslinking a polyethylene glycol (PEG)-based homobifunctional linker with a hydrophobic star-like poly(ε-benzyloxycarbonyl-L-lysine) segment. Consequently, it could self-assemble into shell-crosslinked micelles with enhanced colloidal stability in bloodstream circulation. Notably, PCPZL could effectively load SPIO nanocrystals with a high loading capacity of 66.0 ± 0.9%, forming SPIO nanoclusters with a diameter of approximately 100 nm, a high cluster density, and an impressive T2 relaxivity value 5.5 times higher than that of Resovist®. In vivo MRI measurements highlighted the rapid accumulation and contrast effects of SPIO-loaded PCPZL micelles in the livers of both healthy mice and nude mice with an orthotopic hepatocellular carcinoma tumor model. Moreover, the magnetic micelles remarkably enhanced the relative MRI signal difference between the tumor and normal liver tissues. Overall, our findings demonstrate that PCPZL significantly improves the stability and magnetic properties of SPIO nanocrystals, making SPIO-loaded PCPZL micelles promising MRI contrast agents for diagnosing liver diseases and cancers.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiahui Wang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Shaobin Fang
- The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Zhongjie Huang
- Department of Radiology, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518109, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| |
Collapse
|
17
|
Martinez R, Jackson CE, Üngör Ö, van Tol J, Zadrozny JM. Impact of ligand chlorination and counterion tuning on high-field spin relaxation in a series of V(IV) complexes. Dalton Trans 2023. [PMID: 37485670 DOI: 10.1039/d3dt01274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Methods of controlling spin coherence by molecular design are essential to efforts to develop molecular qubits for quantum information and sensing applications. In this manuscript, we perform the first studies of how arrangements of 35/37Cl nuclear spins in the ligand shell and counterion selection affect the coherent spin dynamics of V(IV) complexes at a high magnetic field. We prepared eight derivatives of the vanadium triscatecholate complex with varying arrangements of 35/37Cl substitution on the catechol backbone and R3NH+ counterions (R = Et, n-Bu, n-Hex) and investigated these species via structural and spectroscopic methods. Hahn-echo pulsed electron paramagnetic resonance (EPR) experiments at high-frequency (120 GHz) and field (ca. 4.4 T) were used to extract the phase-memory relaxation time (Tm) and spin-lattice relaxation (T1) times of the series of complexes. We found Tm values ranging from 4.8 to 1.1 μs in the temperature range of 5 to 40 K, varying by approximately 20% as a function of substitutional pattern. In-depth analysis of the results herein and comparison with related studies of brominated analogues disproves multiple hypothesized mechanisms for Tm control. Ultimately, we propose that more specific properties of the halogen atoms, e.g. the chemical shift, V⋯Cl hyperfine coupling, and quadrupolar coupling, could be contributing to the V(IV) Tm time.
Collapse
Affiliation(s)
- Roxanna Martinez
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Cassidy E Jackson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Johan van Tol
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
18
|
De S, Mondal A, Ruan Z, Tong M, Layfield RA. Dynamic Magnetic Properties of Germole-ligated Lanthanide Sandwich Complexes. Chemistry 2023; 29:e202300567. [PMID: 37017588 PMCID: PMC10947301 DOI: 10.1002/chem.202300567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/06/2023]
Abstract
The first germole-ligated single-molecule magnets are reported, with contrasting properties found for the near-linear sandwich complexes [(η8 -COT)Ln(η5 -CpGe ]- , where Ln=Dy (1Dy ) or Er (1Er ), COT is cyclo-octatetraenyl and CpGe is [GeC4 -2,5-(SiMe3 )2 -3,4-Me2 ]2- . Whereas 1Er has an energy barrier of 120(1) cm-1 in zero applied field and open hysteresis loops up to 10 K, the relaxation in 1Dy is characterized by quantum tunneling within the ground state.
Collapse
Affiliation(s)
- Siddhartha De
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| | - Arpan Mondal
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of the Ministry of Education School of ChemistrySun-Yat Sen UniversityGuangzhou510006P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of the Ministry of Education School of ChemistrySun-Yat Sen UniversityGuangzhou510006P. R. China
| | - Richard A. Layfield
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| |
Collapse
|
19
|
Ishizaki T, Ozeki T. Slow magnetic relaxation of a S = 1/2 copper(II)-substituted Keggin-type silicotungstate. Dalton Trans 2023; 52:4678-4683. [PMID: 36779264 DOI: 10.1039/d2dt03999k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
This is the first report on slow magnetic relaxation in an S = 1/2 system based on a first-row transition metal ion with the polyoxometalate skeleton [(n-C4H9)4N]4H2[SiW11O39Cu] (1). The X-band electron-spin-resonance spectrum of 1 measured at room temperature indicates that the copper ion experiences significantly reduced intermolecular interactions compared to the potassium salt and that it adopts a five-coordinated square-pyramidal coordination geometry. The AC magnetic-susceptibility measurements revealed that 1 undergoes slow magnetic relaxation in an applied static magnetic field (Hdc). The extracted spin-lattice relaxation time (92 ms at 1.8 K and Hdc = 5000 Oe) for 5% magnetically diluted 1, [(n-C4H9)4N]4H2[SiW11O39Cu0.05Zn0.95] (dil.1), is comparable to those of other potential S = 1/2 spin qubits. A relaxation-time analysis indicated that Raman spin-lattice relaxation dominates even at low temperatures in an optimized field. The extracted Raman exponent (n = 2.30) is smaller than those of other S = 1/2 complexes that carry organic ligands, which implies that the decrease in relaxation time at higher temperatures is likely to be moderate.
Collapse
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Tomoji Ozeki
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
20
|
Campanella AJ, Üngör Ö, Zadrozny JM. Quantum Mimicry With Inorganic Chemistry. COMMENT INORG CHEM 2023; 44:11-53. [PMID: 38515928 PMCID: PMC10954259 DOI: 10.1080/02603594.2023.2173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.
Collapse
Affiliation(s)
- Anthony J. Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| |
Collapse
|
21
|
The Effects of Mono- and Bivalent Linear Alkyl Interlayer Spacers on the Photobehavior of Mn(II)-Based Perovskites. Int J Mol Sci 2023; 24:ijms24043280. [PMID: 36834688 PMCID: PMC9967457 DOI: 10.3390/ijms24043280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Mn(II)-based perovskite materials are being intensively explored for lighting applications; understanding the role of ligands regarding their photobehavior is fundamental for their development. Herein, we report on two Mn (II) bromide perovskites using monovalent (perovskite 1, P1) and bivalent (perovskite 2, P2) alkyl interlayer spacers. The perovskites were characterized with powder X-ray diffraction (PXRD), electron spin paramagnetic resonance (EPR), steady-state, and time-resolved emission spectroscopy. The EPR experiments suggest octahedral coordination in P1 and tetrahedral coordination for P2, while the PXRD results demonstrate the presence of a hydrated phase in P2 when exposed to ambient conditions. P1 exhibits an orange-red emission, while P2 shows a green photoluminescence, as a result of the different types of coordination of Mn(II) ions. Furthermore, the P2 photoluminescence quantum yield (26%) is significantly higher than that of P1 (3.6 %), which we explain in terms of different electron-phonon couplings and Mn-Mn interactions. The encapsulation of both perovskites into a PMMA film largely increases their stability against moisture, being more than 1000 h for P2. Upon increasing the temperature, the emission intensity of both perovskites decreases without a significant shift in the emission spectrum, which is explained in terms of an increase in the electron-phonon interactions. The photoluminescence decays fit two components in the microsecond regime-the shortest lifetime for hydrated phases and the longest one for non-hydrated phases. Our findings provide insights into the effects of linear mono- and bivalent organic interlayer spacer cations on the photophysics of these kinds of Mn (II)-based perovskites. The results will help in better designs of Mn(II)-perovskites, to increase their lighting performance.
Collapse
|
22
|
Zhou Y, Moorthy S, Wei XQ, Singh SK, Tian Z, Shao D. A porous cobalt(II)-organic framework exhibiting high room temperature proton conductivity and field-induced slow magnetic relaxation. Dalton Trans 2023; 52:909-918. [PMID: 36594631 DOI: 10.1039/d2dt03383f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A two-dimensional (2D) cobalt(II) metal-organic framework (MOF) constructed by a ditopic organic ligand, formulated as {[Co(Hbic)(H2O)]·4H2O}n (1) (H2bic = 1H-benzimidazole-5-carboxylic acid), was hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction shows that the distorted octahedral Co2+ ions, as coordination nodes, are bridged to form 2D honeycomb networks, which are further organized into a 3D supramolecular porous framework through multiple hydrogen bonds and interlayer π-π interactions. Dynamic crystallography experiments reveal the anisotropic thermal expansion behavior of the lattice, suggesting a flexible hydrogen-bonded 3D framework. Interestingly, hydrogen-bonded (H2O)4 tetramers were found to be located in porous channels, yielding 1D proton transport pathways. As a result, the compound exhibited a high room-temperature proton conductivity of 1.6 × 10-4 S cm-1 under a relative humidity of 95% through a Grotthuss mechanism. Magnetic investigations combined with theoretical calculations reveal giant easy-plane magnetic anisotropy of the distorted octahedral Co2+ ions with the experimental and computed D values being 87.1 and 109.3 cm-1, respectively. In addition, the compound exhibits field-induced slow magnetic relaxation behavior at low temperatures with an effective energy barrier of Ueff = 45.2 cm-1. Thus, the observed electrical and magnetic properties indicate a rare proton conducting SIM-MOF. The foregoing results provide a unique bifunctional cobalt(II) framework material and suggest a promising way to achieve magnetic and electrical properties using a supramolecular framework platform.
Collapse
Affiliation(s)
- Yue Zhou
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Xiao-Qin Wei
- Department of Material Science and Engineering, Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong University, Jinzhong, 030619, P. R. China
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
23
|
Tang WJ, Wu ST, Bu XM, Zhang HY, Wei XQ, Shao D. Field-induced single-ion magnet behavior in a cobalt(II) coordination polymer constructed by a mixed bipyridyl-tetracarboxylate strategy. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Shao D, Zhou Y, Yang X, Yue J, Ming S, Wei XQ, Tian Z. Supramolecular encapsulation of hexaaquacobalt(II) cations in a hydrogen-bonded framework for slow magnetic relaxation and high proton conduction. Dalton Trans 2022; 51:18514-18519. [PMID: 36440615 DOI: 10.1039/d2dt03278c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The supramolecular assembly of hexaaquacobalt(II) nitrate and a tetradentate carboxylate ligand resulted in the isolation of a cobalt hydrogen-bonded organic framework (HOF). Variable-temperature X-ray diffraction experiments reveal high thermal stability of the framework sustained by charge-assisted, multiple hydrogen bonding interactions with the co-former. Interestingly, the material shows field-induced slow relaxation of magnetization originating from the magnetically anisotropic Co2+ ions within the supramolecular framework, revealing a rare single-ion magnet (SIM) HOF. Additionally, the HOF also exhibits high proton conductivity above 100 °C due to the extensive H-bond networks and high content of water and carboxylate within the material. More importantly, these results not only observe the magnetic and electrical properties of an old molecule but also demonstrate a significant turn-on effect of multifunctionalities from non-functional synthons achieved in a supramolecular approach.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhou
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Xiaodong Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Jing Yue
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Shujun Ming
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Xiao-Qin Wei
- Department of Material Science and Engineering, Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong University, Jinzhong, 030619, P. R. China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| |
Collapse
|
25
|
Sauza-de la Vega A, Pandharkar R, Stroscio GD, Sarkar A, Truhlar DG, Gagliardi L. Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits. JACS AU 2022; 2:2029-2037. [PMID: 36186551 PMCID: PMC9516709 DOI: 10.1021/jacsau.2c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 05/30/2023]
Abstract
Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet-triplet gaps and zero-field splitting (ZFS) parameters in Cr(IV) aryl complexes. We find that two multireference methods, multistate complete active space second-order perturbation theory (MS-CASPT2) and hybrid multistate pair-density functional theory (HMS-PDFT), perform better than Kohn-Sham density functional theory for singlet-triplet gaps. Despite the very small values of the ZFS parameters, both multireference methods performed qualitatively well. MS-CASPT2 and HMS-PDFT performed particularly well for predicting the trend in the ratio of the rhombic and axial ZFS parameters, |E/D|. We have also investigated the dependence and sensitivity of the calculated ZFS parameters on the active space and the molecular geometry. The methodologies outlined here can guide future prediction of ZFS parameters in molecular qubit candidates.
Collapse
Affiliation(s)
- Arturo Sauza-de la Vega
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Riddhish Pandharkar
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Gautam D. Stroscio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Arup Sarkar
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455−0431, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
26
|
Marcinkowski D, Adamski A, Kubicki M, Consiglio G, Patroniak V, Ślusarski T, Açıkgöz M, Szeliga D, Vadra N, Karbowiak M, Stefaniuk I, Rudowicz C, Gorczyński A, Korabik M. Understanding the effect of structural changes on slow magnetic relaxation in mononuclear octahedral copper(II) complexes. Dalton Trans 2022; 51:12041-12055. [PMID: 35876304 DOI: 10.1039/d2dt01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current advances in molecular magnetism are aimed at the construction of molecular nanomagnets and spin qubits for their utilization as high-density data storage materials and quantum computers. Mononuclear coordination compounds with low spin values of S = ½ are excellent candidates for this endeavour, but knowledge of their construction via rational design is limited. This particularly applies to the single copper(II) spin center, having been only recently demonstrated to exhibit slow relaxation of magnetisation in the appropriate octahedral environment. We have thus prepared a unique organic scaffold that would allow one to gain in-depth insight into how purposeful structural differences affect the slow magnetic relaxation in monometallic, transition metal complexes. As a proof-of-principle, we demonstrate how one can construct two, structurally very similar complexes with isolated Cu(II) ions in an octahedral ligand environment, the magnetic properties of which differ significantly. The differences in structural symmetry effects and in magnetic relaxation are corroborated with a series of experimental techniques and theoretical approaches, showing how symmetry distortions and crystal packing affect the relaxation behaviour in these isolated Cu(II) systems. Our unique organic platform can be efficiently utilized for the construction of various transition-metal ion systems in the future, effectively providing a model system for investigation of magnetic relaxation via targeted structural distortions.
Collapse
Affiliation(s)
- Dawid Marcinkowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Ariel Adamski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Tomasz Ślusarski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. .,Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Muhammed Açıkgöz
- Department of Science, The State University of New York (SUNY) Maritime College, New York 10465, USA
| | - Daria Szeliga
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Nahir Vadra
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. .,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física and CONICET - Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires C1428EGA, Argentina
| | - Mirosław Karbowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Ireneusz Stefaniuk
- College of Natural Sciences, University of Rzeszow, Rejtana 16a, 35-310 Rzeszow, Poland
| | - Czesław Rudowicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Maria Korabik
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
27
|
Dunstan MA, Brown DS, Sorace L, Mole RA, Boskovic C. Modulation of Slow Magnetic Relaxation in Gd(III)-Tetrahalosemiquinonate Complexes. Chem Asian J 2022; 17:e202200325. [PMID: 35644855 PMCID: PMC9400849 DOI: 10.1002/asia.202200325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Indexed: 11/20/2022]
Abstract
Incorporating lanthanoid(III)-radical magnetic exchange coupling is a possible route to improving the performance of lanthanoid (Ln) single-molecule magnets (SMMs), molecular materials that exhibit slow relaxation and low temperature quantum tunnelling of the magnetization. Complexes of Gd(III) can conveniently be used as model systems to study the Ln-radical exchange coupling, thanks to the absence of the orbital angular momentum that is present for many Ln(III) ions. Two new Gd(III)-radical compounds of formula [Gd(18-c-6)X4 SQ(NO3 )].I3 (18-c-6=18-crown-6, X4 SQ⋅- =tetrahalo-1,2-semiquinonate, 1: X=Cl, 2: X=Br) have been synthesized, and the presence of the dioxolene ligand in its semiquinonate form confirmed by X-ray crystallography, UV-Visible-NIR spectroscopy and voltammetry. Static magnetometry and EPR spectroscopy indicate differences in the low temperature magnetic properties of the two compounds, with antiferromagnetic exchange coupling of JGd-SQ ∼-2.0 cm-1 (Hex =-2JGd-SQ (SGd SSQ )) determined by data fitting. Interestingly, compound 1 exhibits slow magnetic relaxation in applied magnetic fields while 2 relaxes much faster, pointing to the major role of packing effects in modulating slow relaxation of the magnetization.
Collapse
Affiliation(s)
- Maja A. Dunstan
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| | - Dominic S. Brown
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| | - Lorenzo Sorace
- Department of Chemistry, “Ugo Schiff”Universita Degli Studi FirenzeVia della Lastruccia, 1350019Sesto FiorentinoItaly
| | - Richard A. Mole
- Australian Centre for Neutron ScatteringAustralian Nuclear Science and Technology OrganisationLocked Bag 2001Kirrawee DC2232Australia
| | - Colette Boskovic
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
28
|
Mautner FA, Bierbaumer F, Fischer RC, Tubau À, Speed S, Ruiz E, Massoud SS, Vicente R, Gómez-Coca S. Insights into the Spin Dynamics of Mononuclear Cerium(III) Single-Molecule Magnets. Inorg Chem 2022; 61:11124-11136. [PMID: 35815859 PMCID: PMC9490812 DOI: 10.1021/acs.inorgchem.2c00958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four novel CeIII mononuclear complexes of formulas [Ce(ntfa)3(MeOH)2] (1), [Ce(ntfa)3(5,5'-Me2bipy)] (2), [Ce(ntfa)3(terpy)] (3), and [Ce(ntfa)3(bipy)2] (4), where ntfa = 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dionato, 5,5'-Me2bipy = 5,5'-dimethyl-2,2'-dipyridyl, terpy = 2,2':6',2″-terpyridine, and bipy = 2,2'-bipyridine, have been synthesized and structurally characterized with CeIII displaying coordination numbers of 8, 8, 9, and 10, respectively. Magnetic measurements indicate that all the complexes show a field-induced single-ion magnet behavior under a small applied dc field. The magnetic analysis shows the relevance of the different spin relaxation mechanisms in the magnetic relaxation of the CeIII compounds, with special emphasis on the local-mode process. Multiconfigurational calculations were also performed to get more information on the axiality of the compounds.
Collapse
Affiliation(s)
- Franz A Mautner
- Institut für Physikalische und Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria
| | - Florian Bierbaumer
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria
| | - Roland C Fischer
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria
| | - Ànnia Tubau
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Saskia Speed
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.,Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, Louisiana 70504, United States
| | - Ramon Vicente
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.,Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
29
|
Orlova AP, Hilgar JD, Bernbeck MG, Gembicky M, Rinehart JD. Intuitive Control of Low-Energy Magnetic Excitations via Directed Dipolar Interactions in a Series of Er(III)-Based Complexes. J Am Chem Soc 2022; 144:11316-11325. [PMID: 35713679 DOI: 10.1021/jacs.2c03236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dipolar coupling is rarely invoked as a driving force for slow relaxation dynamics in lanthanide-based single-molecule magnets, though it is often the strongest mechanism available for mediating inter-ion magnetic interactions in such species. Indeed, for multinuclear lanthanide complexes, the magnitude and anisotropy of the dipolar interaction can be considerable given their ability to form highly directional, high-moment ground states. Herein, we present a mono-, di-, and trinuclear erbium-based single-molecule magnet sequence, ([Er-TiPS2COT]+)n (n = 1-3), wherein a drastic reduction in the allowedness of magnetic relaxation pathways is rationalized within the framework of the dipole-dipole interactions between angular momentum quanta. The resulting design principles for multinuclear molecular magnetism arising from intramolecular dipolar coupling interactions between highly anisotropic magnetic states present a nuanced justification of the relaxation dynamics in complex manifolds of individual quantized transitions. Experimental evidence for the validity of this model is provided by coupling the relaxation dynamics to an AC magnetic field across an unprecedented frequency range for molecular magnetism (103-10-5 Hz). The combination of slow dynamics and multiple, low-energy transitions leads to a number of noteworthy phenomena, including a lanthanide single-molecule magnet with three well-defined relaxation processes observable at a single temperature.
Collapse
Affiliation(s)
- Angelica P Orlova
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jeremy D Hilgar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Maximilian G Bernbeck
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jeffrey D Rinehart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
30
|
Torres JF, Oi CH, Moseley IP, El‐Sakkout N, Knight BJ, Shearer J, García‐Serres R, Zadrozny JM, Murray LJ. Dinitrogen Coordination to a High‐Spin Diiron(I/II) Species. Angew Chem Int Ed Engl 2022; 61:e202202329. [DOI: 10.1002/anie.202202329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Juan F. Torres
- Center for Catalysis and Florida Center for Heterocyclic Chemistry Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Collin H. Oi
- Center for Catalysis and Florida Center for Heterocyclic Chemistry Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Ian P. Moseley
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Nabila El‐Sakkout
- Univ. Grenoble Alpes CNRS CEA IRIG Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
| | - Brian J. Knight
- Center for Catalysis and Florida Center for Heterocyclic Chemistry Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Jason Shearer
- Department of Chemistry Trinity University San Antonio TX 78212 USA
| | - Ricardo García‐Serres
- Univ. Grenoble Alpes CNRS CEA IRIG Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
| | - Joseph M. Zadrozny
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Leslie J. Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
31
|
An intermetallic molecular nanomagnet with the lanthanide coordinated only by transition metals. Nat Commun 2022; 13:2014. [PMID: 35440596 PMCID: PMC9018761 DOI: 10.1038/s41467-022-29624-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic molecules known as molecular nanomagnets (MNMs) may be the key to ultra-high density data storage. Thus, novel strategies on how to design MNMs are desirable. Here, inspired by the hexagonal structure of the hardest intermetallic magnet SmCo5, we have synthesized a nanomagnetic molecule where the central lanthanide (Ln) ErIII is coordinated solely by three transition metal ions (TM) in a perfectly trigonal planar fashion. This intermetallic molecule [ErIII(ReICp2)3] (ErRe3) starts a family of molecular nanomagnets (MNM) with unsupported Ln-TM bonds and paves the way towards molecular intermetallics with strong direct magnetic exchange interactions-a promising route towards high-performance single-molecule magnets.
Collapse
|
32
|
Torres JF, Oi CH, Moseley I, El-Sakkout N, Knight BJ, Shearer J, García-Serres R, Zadrozny JM, Murray LJ. Dinitrogen Coordination to a High Spin Diiron(I/II) Species. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Ian Moseley
- Colorado State University Chemistry UNITED STATES
| | - Nabila El-Sakkout
- Université Grenoble Alpes: Universite Grenoble Alpes Chemistry UNITED STATES
| | | | | | | | | | - Leslie Justin Murray
- University of Florida Department of Chemistry P.O. Box 117200 32611-7200 Gainesville UNITED STATES
| |
Collapse
|
33
|
Moseley IP, Ard CP, DiVerdi JA, Ozarowski A, Chen H, Zadrozny JM. Slowing magnetic relaxation with open-shell diluents. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100802. [PMID: 35425929 PMCID: PMC9007552 DOI: 10.1016/j.xcrp.2022.100802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Strategies for slowing magnetic relaxation via local environmental design are vital for developing next-generation spin-based technologies (e.g., quantum information processing). Herein, we demonstrate a technique to do so via chemical design of a local magnetic environment. We show that embedding the open-shell complex (Ph4P)2[Co(SPh)4] in solid-state matrices of the isostructural, open-shell species (Ph4P)2[M(SPh)4] (M = Ni2+, S = 1; M = Fe2+, S = 2; M = Mn2+, S = 5 2 ) will slow magnetic relaxation for the embedded [Co(SPh)4]2- ion by three orders of magnitude. Magnetometry, electron paramagnetic resonance (EPR), and computational analyses reveal that integer spin and large, positive zero-field splitting (D) values for the diluent produce a quiet, local magnetic field that slows relaxation rates for the embedded Co molecules. These results will enable the investigation of magnetic systems for which strictly diamagnetic congeners are either synthetically inaccessible or are not isostructural.
Collapse
Affiliation(s)
- Ian P. Moseley
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Christopher P. Ard
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph A. DiVerdi
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Hua Chen
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Lead contact
| |
Collapse
|
34
|
Shao D, Moorthy S, Zhou Y, Wu ST, Zhu JY, Yang J, Wu D, Tian Z, Singh SKK. Field-induced slow magnetic relaxation behaviours in binuclear cobalt(II) metallocycle and exchange-coupled cluster. Dalton Trans 2022; 51:9357-9368. [DOI: 10.1039/d2dt01620f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise control of structures and magnetic properties of a molecular material constitutes an important challenge to realize the tailor-made magnetic function. Herein, we reported that the ligand-directed coordination self-assembly of...
Collapse
|
35
|
Castellanos E, Benner F, Demir S. Taming salophen in rare earth metallocene chemistry. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01331a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented series of salophen-bridged rare earth metallocenes, (Cp*2RE)2(μ-tBusalophen) (RE = Gd, Dy, and Y), has been crystallized. The solid and solution states have been unambiguously characterized by magnetic, spectroscopic and DFT methods.
Collapse
Affiliation(s)
- Ernesto Castellanos
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan, 48824, USA
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan, 48824, USA
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan, 48824, USA
| |
Collapse
|
36
|
Tian Z, Moorthy S, Xiang H, Peng P, You M, Zhang Q, Yang SY, Zhang YL, Wu D, Singh SKK, Shao D. Tuning chain topologies and magnetic anisotropy in one-dimensional cobalt(II) coordination polymers via distinct dicarboxylates. CrystEngComm 2022. [DOI: 10.1039/d2ce00437b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on a terpyridine derivative and two different dicarboxylate ligands, two new cobalt(II) coordination polymers, namely [Co(pytpy)(DClbdc)]n (1) and [Co(pytpy)(ndc)]n (2) (pytpy = 4'-(4-Pyridyl)-2,2':6',2''-terpyridine, H2DClbc = 2,5-Dichloroterephthalic acid, and H2ndc...
Collapse
|