1
|
Fu F, Crespy D, Landfester K, Jiang S. In situ characterization techniques of protein corona around nanomaterials. Chem Soc Rev 2024. [PMID: 39291461 DOI: 10.1039/d4cs00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.
Collapse
Affiliation(s)
- Fangqin Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Xia L, Liu J, Zhu X, Liu R, Wen H, Cao Q. Asymmetric magnetic levitation for density-based measurement and analysis. Anal Chim Acta 2024; 1287:341951. [PMID: 38182357 DOI: 10.1016/j.aca.2023.341951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Magnetic levitation (MagLev) based on negative magnetophoresis represents a promising technology for density-based analysis and manipulation of nonmagnetic objects. This approach has garnered considerable interest across multiple fields, such as chemistry, materials science, and biochemistry, primarily due to its inherent simplicity, precision, and cost-effectiveness. However, it is essential to recognize that frequently used MagLev configurations, including standard MagLev and axial MagLev, are not without their limitations. These configurations often struggle to strike a balance between levitation performance, ease of operation, and visibility. Therefore, it is necessary to develop a new MagLev configuration to address the aforementioned issue. RESULTS This work describes the development of an innovative MagLev, termed "asymmetric MagLev", achieved by combining a ring magnet and a cylinder magnet as up-down asymmetric magnetic field sources. The asymmetric design overcomes the physical obstacles along the centerline of the standard MagLev, offering unique open-structure advantages, including easy handling of samples, the ability to observe samples from the top or bottom, and no restrictions on the container height. Meanwhile, comparative analysis reveals a considerable enhancement in the working distance of the asymmetric MagLev without significantly sacrificing the measurement range compared to the axial MagLev. Notably, the asymmetric MagLev achieves a remarkable sensitivity of up to about 1.8 × 104 mm (g cm-3)-1, surpassing the axial MagLev by approximately 30 times. Furthermore, experimental results validate the successful application of the asymmetric MagLev in density measurement and quality detection of small-sized objects. SIGNIFICANCE This pioneering configuration represents the first utilization of up-down asymmetric magnets in the field of MagLev. Through the integration of an axially magnetized ring magnet and a cylinder magnet, the asymmetric MagLev design overcomes the limitations associated with conventional MagLev configurations. This innovative design exhibits outstanding operational capabilities and levitation performance, making it suitable for a wide range of applications in density-based measurement and analysis.
Collapse
Affiliation(s)
- Liangyu Xia
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialuo Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhui Zhu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruiqi Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wen
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Yu J, Li D, Zhu C, Ouyang Q, Miao C, Yu H. A Magnetic Levitation System for Range/Sensitivity-Tunable Measurement of Density. SENSORS (BASEL, SWITZERLAND) 2023; 23:3955. [PMID: 37112295 PMCID: PMC10143956 DOI: 10.3390/s23083955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Magnetic levitation (MagLev) is a promising density-based analytical technique with numerous applications. Several MagLev structures with different levels of sensitivity and range have been studied. However, these MagLev structures can seldom satisfy the different performance requirements simultaneously, such as high sensitivity, wide measurement range, and easy operation, which have prevented them from being widely used. In this work, a tunable MagLev system was developed. It is confirmed by numerical simulation and experiments that this system possesses a high resolution down to 10-7 g/cm3 or even higher compared to the existing systems. Meanwhile, the resolution and range of this tunable system can be adjusted to meet different requirements of measurement. More importantly, this system can be operated simply and conveniently. This bundle of characteristics demonstrates that the novel tunable MagLev system could be handily applied in various density-based analyses on demand, which would greatly expand the ability of MagLev technology.
Collapse
Affiliation(s)
- Junhui Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Donghai Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengxian Zhu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiran Ouyang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chunyang Miao
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Haidong Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|