1
|
Nguyen HL, Hieu HK, Nguyen TQ, Nhung NTA, Li MS. Neuropilin-1 Protein May Serve as a Receptor for SARS-CoV-2 Infection: Evidence from Molecular Dynamics Simulations. J Phys Chem B 2024; 128:7141-7147. [PMID: 39010661 DOI: 10.1021/acs.jpcb.4c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The binding of the virus to host cells is the first step in viral infection. Human cell angiotensin converting enzyme 2 (ACE2) is the most popular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while other receptors have recently been observed in experiments. Neuropilin-1 protein (NRP1) is one of them, but the mechanism of its binding to the wild type (WT) and different variants of the virus remain unclear at the atomic level. In this work, all-atom umbrella sampling simulations were performed to clarify the binding mechanism of NRP1 to the spike protein fragments 679-685 of the WT, Delta, and Omicron BA.1 variants. We found that the Delta variant binds most strongly to NRP1, while the affinity for Omicron BA.1 slightly decreases for NRP1 compared to that of WT, and the van der Waals interaction plays a key role in stabilizing the studied complexes. The change in the protonation state of the His amino acid results in different binding free energies between variants. Consistent with the experiment, decreasing the pH was shown to increase the binding affinity of the virus to NRP1. Our results indicate that Delta and Omicron mutations not only affect fusogenicity but also affect NRP1 binding. In addition, we argue that viral evolution does not further improve NRP1 binding affinity which remains in the μM range but may increase immune evasion.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang 550000, Viet Nam
| | - Ho Khac Hieu
- Faculty of Environmental and Natural Sciences, Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang 550000, Viet Nam
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang 550000, Viet Nam
| | - Thai Quoc Nguyen
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap 81000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
2
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
3
|
El Salamouni NS, Cater JH, Spenkelink LM, Yu H. Nanobody engineering: computational modelling and design for biomedical and therapeutic applications. FEBS Open Bio 2024. [PMID: 38898362 DOI: 10.1002/2211-5463.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only antibodies, have emerged as powerful tools for diverse biomedical applications. In this comprehensive review, we discuss the structural characteristics, functional properties, and computational approaches driving the design and optimisation of synthetic nanobodies. We explore their unique antigen-binding domains, highlighting the critical role of complementarity-determining regions in target recognition and specificity. This review further underscores the advantages of nanobodies over conventional antibodies from a biosynthesis perspective, including their small size, stability, and solubility, which make them ideal candidates for economical antigen capture in diagnostics, therapeutics, and biosensing. We discuss the recent advancements in computational methods for nanobody modelling, epitope prediction, and affinity maturation, shedding light on their intricate antigen-binding mechanisms and conformational dynamics. Finally, we examine a direct example of how computational design strategies were implemented for improving a nanobody-based immunosensor, known as a Quenchbody. Through combining experimental findings and computational insights, this review elucidates the transformative impact of nanobodies in biotechnology and biomedical research, offering a roadmap for future advancements and applications in healthcare and diagnostics.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| | - Jordan H Cater
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Australia
| |
Collapse
|
4
|
Nguyen HL, Nguyen TQ, Li MS. SARS-CoV-2 Omicron Subvariants Do Not Differ Much in Binding Affinity to Human ACE2: A Molecular Dynamics Study. J Phys Chem B 2024; 128:3340-3349. [PMID: 38564480 PMCID: PMC11017248 DOI: 10.1021/acs.jpcb.3c06270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The emergence of the variant of concern Omicron (B.1.1.529) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exacerbates the COVID-19 pandemic due to its high contagious ability. Studies have shown that the Omicron binds human ACE2 more strongly than the wild type. The prevalence of Omicron in new cases of COVID-19 promotes novel lineages with improved receptor binding affinity and immune evasion. To shed light on this open problem, in this work, we investigated the binding free energy of the receptor binding domain of the Omicron lineages BA.2, BA.2.3.20, BA.3, BA4/BA5, BA.2.75, BA.2.75.2, BA.4.6, XBB.1, XBB.1.5, BJ.1, BN.1, BQ.1.1, and CH.1.1 to human ACE2 using all-atom molecular dynamics simulation and the molecular mechanics Poisson-Boltzmann surface area method. The results show that these lineages have increased binding affinity compared to the BA.1 lineage, and BA.2.75 and BA.2.75.2 subvariants bind ACE2 more strongly than others. However, in general, the binding affinities of the Omicron lineages do not differ significantly from each other. The electrostatic force dominates over the van der Waals force in the interaction between Omicron lineages and human cells. Based on our results, we argue that viral evolution does not further improve the affinity of SARS-CoV-2 for ACE2 but may increase immune evasion.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute
of Fundamental and Applied Sciences, Duy
Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty
of Environmental and Natural Sciences, Duy
Tan University, Da Nang 550000, Vietnam
| | - Thai Quoc Nguyen
- Faculty
of Physics, VNU University of Science, Vietnam
National University, 334 Nguyen Trai, Hanoi 100000, Vietnam
- Dong
Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh
City, Dong Thap 81000, Vietnam
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
5
|
Lan PD, Nissley DA, O’Brien EP, Nguyen TT, Li MS. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. J Chem Phys 2024; 160:055101. [PMID: 38310477 PMCID: PMC11223169 DOI: 10.1063/5.0188053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
The binding of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2) is the first step in human viral infection. Therefore, understanding the mechanism of interaction between RBD and ACE2 at the molecular level is critical for the prevention of COVID-19, as more variants of concern, such as Omicron, appear. Recently, atomic force microscopy has been applied to characterize the free energy landscape of the RBD-ACE2 complex, including estimation of the distance between the transition state and the bound state, xu. Here, using a coarse-grained model and replica-exchange umbrella sampling, we studied the free energy landscape of both the wild type and Omicron subvariants BA.1 and XBB.1.5 interacting with ACE2. In agreement with experiment, we find that the wild type and Omicron subvariants have similar xu values, but Omicron binds ACE2 more strongly than the wild type, having a lower dissociation constant KD.
Collapse
Affiliation(s)
| | - Daniel A. Nissley
- Department of Statistics, University of Oxford, Oxford Protein Bioinformatics Group, Oxford OX1 2JD, United Kingdom
| | | | - Toan T. Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems and Department of Theoretical Physics, Faculty of Physics, University of Science, Vietnam National University - Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi 11400, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|