1
|
Foo JJ, Ng SF, Xiong M, Ong WJ. Mechanistic study of the competition between carbon dioxide reduction and hydrogen evolution reaction and selectivity tuning via loading single-atom catalysts on graphitic carbon nitride. NANOSCALE 2024; 16:16015-16025. [PMID: 39012281 DOI: 10.1039/d4nr01932f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In the context of catalytic CO2 reduction (CO2RR), the interference of the inherent hydrogen evolution reaction (HER) and the possible selectivity towards CO have posed a significant challenge to the generation of formic acid. To address this hurdle, in this work, we have investigated the impact of different single-atom metal catalysts on tuning selectivity by employing density functional theory (DFT) calculations to scrutinize the reaction pathways. Single-atom catalysts supported on carbon-based systems have proven to be pivotal in altering both the activity and selectivity of the CO2RR. In this study, a series of single-atom-metal-loaded g-C3N4 monolayers (MCN, M = Ni, Cu, Zn, Ga, Cd, In, Sn, Pb, Ag, Au, Bi, Pd and Pt) were systematically examined. Through detailed DFT calculations, we explored their influence on reaction selectivity between the *COOH and *OCHO intermediates. Notably, NiCN favors the reaction via the *OCHO route, with a significantly lower rate-determining potential of 0.36 eV, which is approximately 73.5% lower than that of the CN system (1.36 eV). Most importantly, the Ni single-atom catalyst with lower coordination significantly enhances CO2 adsorption, promoting CO2RR over HER. Overall, this study, guided by DFT calculations, provides a theoretical prediction of how the selection of single-atom metal catalysts can effectively modulate the reaction pathway, thereby offering a potential solution for achieving high product selectivity in CO2RR.
Collapse
Affiliation(s)
- Joel Jie Foo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
| | - Mo Xiong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shanxi, China.
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
2
|
Zang Y, Cai J, Han Y, Wu H, Zhu W, Shi S, Zhang H, Ran Y, Yang F, Ye M, Yang B, Li Y, Liu Z. CO 2 Activation on Ni(111) and Ni(110) Surfaces in the Presence of Hydrogen. J Phys Chem Lett 2023; 14:4381-4387. [PMID: 37140346 DOI: 10.1021/acs.jpclett.3c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The structure sensitivity of CO2 activation in the presence of H2 has been identified by ambient-pressure X-ray photoelectron spectroscopy (APXPS) on Ni(111) and Ni(110) surfaces under identical reaction conditions. Based on the APXPS results and computer simulations, we propose that, around room temperature, the hydrogen-assisted activation of CO2 is the major reaction path on Ni(111), while the redox pathway of CO2 prevails on Ni(110). With increasing temperature, the two activation pathways are activated in parallel. While the Ni(111) surface is fully reduced to the metallic state at elevated temperatures, two stable Ni oxide species can be observed on Ni(110). Turnover frequency measurements indicate that the low-coordinated sites on Ni(110) promote the activity and selectivity of CO2 hydrogenation to methane. Our findings provide insights into the role of low-coordinated Ni sites in nanoparticle catalysts for CO2 methanation.
Collapse
Affiliation(s)
- Yijing Zang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Cai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Han
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huanyang Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wen Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shucheng Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yihua Ran
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mao Ye
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yimin Li
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Yasuda S, Kunitake Y, Osuga R, Nakamura K, Matsumoto T, Sago K, Kondo JN, Yabushita M, Muramatsu A, Yokoi T. Supported Nickel Zeolite Catalyst for Oxidative Conversion of Methane: Effect of Heteroatoms in the Zeolite Framework on Its Physicochemical and Catalytic Properties. CHEM LETT 2022. [DOI: 10.1246/cl.210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuhei Yasuda
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yusuke Kunitake
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Ryota Osuga
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kengo Nakamura
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Matsumoto
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keita Sago
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Junko N. Kondo
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Atsushi Muramatsu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
4
|
Ke J, Wang YD, Wang CM. First-principles microkinetic simulations revealing the scaling relations and structure sensitivity of CO 2 hydrogenation to C 1 & C 2 oxygenates on Pd surfaces. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 hydrogenation to alcohols and other oxygenates on Pd(211) and Pd(111) surfaces was studied by microkinetic modelling. Energy scaling relations on two surfaces were established. Activity plots as a function of reaction conditions were identified.
Collapse
Affiliation(s)
- Jun Ke
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Yang-Dong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Chuan-Ming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| |
Collapse
|